東京海洋大学2021年度整数問題(2)解説 #shorts #過去問解説 #東京海洋大 #数学 - 質問解決D.B.(データベース)

東京海洋大学2021年度整数問題(2)解説 #shorts #過去問解説 #東京海洋大 #数学

問題文全文(内容文):
(2)$p$が5以上の素数であるとき、$p^2-1$は6の倍数であることを示せ
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(2)$p$が5以上の素数であるとき、$p^2-1$は6の倍数であることを示せ
投稿日:2024.01.13

<関連動画>

大学入試問題#834「置換一択!?」 #弘前大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\sqrt{ 3 }}^{2} (3x-1)\sqrt{ 4-x^2 }\ dx$

出典:2022年広前大学 入試問題
この動画を見る 

福井大 2次方程式と複素平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ

出典:2000年福井大学 過去問
この動画を見る 

大学入試問題#646「似てるけど」 京都工芸繊維大学(2011) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt A \lt \displaystyle \frac{\pi}{2}$
(1)
$\displaystyle \int_{A}^{\frac{\pi}{2}} (\cos\ x)log(\sin\ x) dx$

(2)
$\displaystyle \int_{0}^{A} (\cos\ x)log(\cos\ x) dx$

出典:2011年京都工芸繊維大学後期 入試問題
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x) = -xe^x$ を考える。曲線$C: y = f(x)$の点(a, f(a)) における接線を$l_a$と
し、接線$l_a$とy軸の交点を $(0, g(a))$ とおく。以下の問いに答えよ。
(1) 接線$l_a$の方程式と$g (a)$を求めよ。
以下、aの関数$g (a)$ が極大値をとるときのaの値をbとおく。
(2) bを求め、点$(b, f(b))$ は曲線Cの変曲点であることを示せ。
(3) 曲線Cの点 $(b, f(b))$ における接線$l_b$と x軸の交点のx座標cを求めよ。さらに、
$c\leqq x\leqq 0$の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。
(4)曲線C、接線$l_b$およびy軸で囲まれた部分の面積Sを求めよ。

2022中央大学理工学部過去問
この動画を見る 

センター試験レベル 広島県立大 三次式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#センター試験#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+px+q=0$は2つの実数解$\alpha,\beta(\alpha \neq \beta)$をもつ。
$f(x)=x^3-9x+6$とすると$f(\alpha)=\beta,f(\beta)=\alpha$を満たす。
$p,q$を求めよ。

出典:1998年県立広島大学 過去問
この動画を見る 
PAGE TOP