問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (3)\ 正の数の組(x,\ y)が\hspace{180pt}\\
\left\{
\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}
\right.\hspace{180pt}\\
を満たすときz=xyは(x,\ y)=(a,\ b)で最小値をとる。ここで、\\
\log_{10}a=\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }},\ \log_{10}b=\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ワ\ \ }}\hspace{90pt}\\
である。 \hspace{220pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{4}}\ (3)\ 正の数の組(x,\ y)が\hspace{180pt}\\
\left\{
\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}
\right.\hspace{180pt}\\
を満たすときz=xyは(x,\ y)=(a,\ b)で最小値をとる。ここで、\\
\log_{10}a=\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }},\ \log_{10}b=\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ワ\ \ }}\hspace{90pt}\\
である。 \hspace{220pt}
\end{eqnarray}
2022上智大学文系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (3)\ 正の数の組(x,\ y)が\hspace{180pt}\\
\left\{
\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}
\right.\hspace{180pt}\\
を満たすときz=xyは(x,\ y)=(a,\ b)で最小値をとる。ここで、\\
\log_{10}a=\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }},\ \log_{10}b=\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ワ\ \ }}\hspace{90pt}\\
である。 \hspace{220pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{4}}\ (3)\ 正の数の組(x,\ y)が\hspace{180pt}\\
\left\{
\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}
\right.\hspace{180pt}\\
を満たすときz=xyは(x,\ y)=(a,\ b)で最小値をとる。ここで、\\
\log_{10}a=\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }},\ \log_{10}b=\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ワ\ \ }}\hspace{90pt}\\
である。 \hspace{220pt}
\end{eqnarray}
2022上智大学文系過去問
投稿日:2022.10.08