#高専数学_11#定積分#元高専教員 - 質問解決D.B.(データベース)

#高専数学_11#定積分#元高専教員

問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
投稿日:2024.08.13

<関連動画>

#高知工科大学2024#不定積分_23#元高校教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x \sin\displaystyle \frac{x}{2} dx$

出典:2024年高知工科大学
この動画を見る 

#茨城大学(2020) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{3x^3+4x}{x^2+1} dx$

出典:2020年茨城大学
この動画を見る 

【高校数学】 数Ⅱ-178 定積分と面積⑦

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①放物線$y=-x^2+2x$とx軸で囲まれた部分の面積が、直線$y=ax$によって2等分されるとき、定数aの値を求めよう。
ただし、$0 \lt a \lt 2$とする。
この動画を見る 

東工大 積分 放物線と直線 面積最小値 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#不定積分・定積分#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=-2x^2+x+1$上の1点における接線と$y=x^2$とによって囲まれる部分の面積の最小値を求めよ。

出典:1967年 東京工業大学 過去問
この動画を見る 

大学入試問題#536「計算力大事」 福島県立医科大学(2021) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
すべての実数$x$に対して$f(x)=x+\displaystyle \int_{0}^{1} 2^{2t+x}f(t)\ dt$を満たすとき$f(0)$を求めよ

出典:2021年福島県立医科大学 入試問題
この動画を見る 
PAGE TOP