#高専数学_11#定積分#元高専教員 - 質問解決D.B.(データベース)

#高専数学_11#定積分#元高専教員

問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{dx}{x^2-4x+8}$
投稿日:2024.08.13

<関連動画>

定積分の微分の基本問題 島根大学後期2024 大学入試問題#930

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学
指導講師: ますただ
問題文全文(内容文):
$a$の正の定数とする.
関数$g(x)$が,$x\gt 0$で定義された連続関数で,
次の等式をみたすとき,$g(x)$と$a$の値を求めよ.

$\displaystyle \int_{a}^{x^3} g(u) du =\log x$

2024島根大学後期過去問題
この動画を見る 

大学入試問題#774「基本的な良問」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e-1} \displaystyle \frac{log(log(x+1))}{x+1} dx$

出典:1998年横浜国立大学 入試問題
この動画を見る 

【数Ⅱ】【微分法と積分法】偶関数と奇関数の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
(1)$\int_{-1}^1(4x³+3x²+3x+1)dx$
(2)$\int_{-2}^2(x³-x²-x+4)dx$
(3)$\int_{-2}^2(x⁴-5x³+x²+9x)dx $
この動画を見る 

富山大 積分 6分の1公式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
富山大学過去問題
$y=x^2-2x+1$と$y=mx+2$とで囲まれる面積の最小値
この動画を見る 

#奈良教育大学(2008) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^2} dx$

出典:2008年奈良教育大学
この動画を見る 
PAGE TOP