数学「大学入試良問集」【2−3 方程式と整数解】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【2−3 方程式と整数解】を宇宙一わかりやすく

問題文全文(内容文):
$p,q$を整数とし、$f(x)=x^2+px+q$とおく。
(1)
有理数$a$が方程式$f(x)=0$の一つの解ならば、$a$は整数であることを示せ。

(2)
$f(1)$も$f(2)$も$2$で割り切れないとき、方程式$f(x)=0$は整数の解を持たないことを示せ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$p,q$を整数とし、$f(x)=x^2+px+q$とおく。
(1)
有理数$a$が方程式$f(x)=0$の一つの解ならば、$a$は整数であることを示せ。

(2)
$f(1)$も$f(2)$も$2$で割り切れないとき、方程式$f(x)=0$は整数の解を持たないことを示せ。
投稿日:2021.03.17

<関連動画>

福田の数学〜慶應義塾大学2024環境情報学部第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
四面体 $\mathrm{ABCD}$ において、$|\overrightarrow{\mathrm{AB}}| = 3,$ $|\overrightarrow{\mathrm{AC}}|$ $=|\overrightarrow{\mathrm{AD}}|$$= |\overrightarrow{\mathrm{BC}}|$$=|\overrightarrow{\mathrm{BD}}|=4,$$|\overrightarrow{\mathrm{CD}}|=5$であるとき $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$ $=\frac{\fbox{アイ}}{\fbox{ウエ}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$ $=\frac{\fbox{オカ}}{\fbox{キク}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BD}}$$=\frac{\fbox{ケコ}}{\fbox{サシ}}$
ここで、頂点 $\mathrm{D}$ から $\triangle \mathrm{ABC}$ に下した垂線の足を $\mathrm{H}$ とすると、$\overrightarrow{\mathrm{AH}}$ は $\overrightarrow{\mathrm{AB}}$ と $\overrightarrow{\mathrm{AC}}$ を用いて
$\overrightarrow{\mathrm{AH}}$ $=\frac{\fbox{スセ}}{\fbox{ソタ}} \overrightarrow{\mathrm{AB}}$ $+ \frac{\fbox{チツ}}{\fbox{テト}}\overrightarrow{\mathrm{AC}}$ とあらわすことができる。
垂線 $\mathrm{DH}$ の長さは $\frac{\fbox{ナニ}}{\fbox{ヌネ}}\sqrt{\fbox{ノハ}}$ であるから、四面体 $\mathrm{ABCD}$ の体積は $\frac{\fbox{ヒフ}}{\fbox{ヘホ}}\sqrt{\fbox{マミ}}$ である。
この動画を見る 

東京電機大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京電機大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=3x^2-2\displaystyle \int_{-1}^{0} xf(t) dt+\displaystyle \int_{1}^{2} f(t) dt$
$f(x)$を求めよ

出典:2018年東京電機大学 過去問
この動画を見る 

大学入試問題#672「最近、このタイプが流行り?」 早稲田大学商学部(2022)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$x^2+y^2 \leqq 3$を満たしているとき$x-y-xy$の最大値を求めよ

出典:2022年早稲田大学商学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第4問〜条件付き確率と常用対数の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、
確率$\frac{1}{2}$で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、
必要ならば、$\log_{10}2=0.3010,\ \log_{10}3=0.4771$を用いなさい。
(1)10日目の価格がAよりも高くなるのは、$\boxed{\ \ ア\ \ }$日以上で価格が上昇したとき
である。また、そのような確率は$\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}$である。
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率
は$\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも
1回は価格が下落していた確率は$\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}$である。

2022慶應義塾大学商学部過去問
この動画を見る 

大学入試問題#594「やばいのは見た目だけ」 東京帝国大学(1926) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ i }$を求めよ。
$(i^2=-1)$

出典:1926年東京帝国大学医学部 入試問題
この動画を見る 
PAGE TOP