【確実に解ける鉄則!】不定方程式とユークリッドの互除法をまとめて解説! - 質問解決D.B.(データベース)

【確実に解ける鉄則!】不定方程式とユークリッドの互除法をまとめて解説!

問題文全文(内容文):

754と273の最大公約数を求めよ


$3x+2y=17$をみたす自然数$x,y$を求めよ


$5x+3y=2$をみたす整数$x,y$をすべて求めよ
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

754と273の最大公約数を求めよ


$3x+2y=17$をみたす自然数$x,y$を求めよ


$5x+3y=2$をみたす整数$x,y$をすべて求めよ
投稿日:2021.07.14

<関連動画>

〇〇きの定理で解説!!

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の図のxの値を求めよ(図は動画参照)
この動画を見る 

【理数個別の過去問解説】2020年度北海道大学 数学 第3問(1)(2)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。
(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
この動画を見る 

【数A】【場合の数と確率】確率の乗法定理 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
箱Aには赤玉3個と白玉2個、箱Bには赤玉と白玉2個ずつ入っている。
(1)箱Aから玉を1個取り出し、それを箱Bに入れた後、箱Bから玉を1個取り出すとき、それが赤玉である確率を求めよ。
(2)箱Aから玉を2個取り出し、それを箱Bに入れた後、箱Bから玉を2個同時に取り出すとき、それらが2個とも赤玉である確率を求めよ。
この動画を見る 

【高校数学】重複を許して取る組合せ~公式を意識しないで解く~ 1-12【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【数学A】重複を許して取る組合せ
この動画を見る 

福田の数学〜中央大学2024理工学部第2問〜確率の基本性質と3で割ったときの剰余類

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。$1, \, 2, \, \ldots, \, n$ の数が1つずつ書かれた $n$ 枚のカードがある。これらをよく混ぜて1枚のカードを引き、そこに書かれた数を $X$ とする。そのカードを元に戻し、よく混ぜてからもう一度1枚のカードを引き、そこに書かれた数を $Y$ とする。このとき $X-Y$ が $3$ の倍数である確率を $p(n)$、$X-Y-1$ が $3$ の倍数である確率を $q(n)$、$X-Y+1$ が $3$ の倍数である確率を $r(n)$ とする。
$(1)$ $q(3)=\fbox{ク}$ である。
$(2)$ $r(n)$ は $q(n)$ を用いて $r(n)=\fbox{ケ}$ と表せる。
$(3)$ $n$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{コ}}{\fbox{サ}}$ が成り立つ。
$(4)$ $n-1$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{シ}}{\fbox{ス}}$ が成り立つ。
$(5)$ $n-2$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{セ}}{\fbox{ソ}}$ が成り立つ。
この動画を見る 
PAGE TOP