大学入試問題#253 青山学院大学(2011) #定積分 - 質問解決D.B.(データベース)

大学入試問題#253 青山学院大学(2011) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi}x(\sin\ x+\cos\ 2x)dx$を計算せよ。

出典:2011年青山学院大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi}x(\sin\ x+\cos\ 2x)dx$を計算せよ。

出典:2011年青山学院大学 入試問題
投稿日:2022.07.13

<関連動画>

【高校数学】 数Ⅱ-87 一般角と弧度法

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の角の憧憬を図示しよう。

①70°

②-150°

③400°

④-635°

◎次の角を、度数は弧度に、弧度は度数に直そう。

⑤30°

⑥135°

⑦210°

⑧$\displaystyle \frac{π}{3}$

⑨$\displaystyle \frac{2}{15}π$

⑩$π$
この動画を見る 

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
この動画を見る 

福田のおもしろ数学122〜どれがどれですか?該当する関数を見つけてください

アイキャッチ画像
単元: #数Ⅱ#三角関数#指数関数と対数関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{array}{|c|c|c|c|}
\hline
x & a & b & c\\ \hline
f_1(x) & 0.980 & 0.921 & 0.825 \\ \hline
f_2(x) & 0.063 & 0.251 & 0.565 \\ \hline
f_3(x) & 0.803 & 0.644 & 0.517 \\ \hline
f_4(x) & 0.199 & 0.389 & 0.565 \\ \hline
\end{array}$
上の数表において、$f_1(x)$, $f_2(x)$, $f_3(x)$, $f_4(x)$は関数
$\sin x$, $\cos x$, $\frac{\pi}{2}x^2$, $3^{-x}$
のうちのどれかである。どれがどれか?
ただし、$a$, $b$, $c$は0<$a$<$b$<$c$<$\frac{\pi}{2}$, $b$=$\frac{a+c}{2}$ を満たし、数値はどれも小数第4位を四捨五入してある。
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 

千葉県(改) 令和4年度 数学 関数 2022 入試問題100題解説73問目!!

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ACDBと長方形CEBFは合同
直線EFの式は?
*図は動画内参照

2022千葉県
この動画を見る 
PAGE TOP