【数Ⅱ】積分法:2次関数の面積を半分にする1次関数 - 質問解決D.B.(データベース)

【数Ⅱ】積分法:2次関数の面積を半分にする1次関数

問題文全文(内容文):
放物線y=-x(x-6)とx軸で囲まれた図形の面積を、直線y=mxが2等分するとき、定数mの値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:15 グラフを描いて考えよう
1:18 1/6公式の利用
2:22 3乗を外すときは3乗根
3:26 名言

単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=-x(x-6)とx軸で囲まれた図形の面積を、直線y=mxが2等分するとき、定数mの値を求めよう。
投稿日:2021.09.03

<関連動画>

福田の数学〜神戸大学2022年文系第1問〜場合分けされた放物線と直線の共有点と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。$x \geqq 0$のとき$f(x)=^2、x \lt 0$のとき$f(x)=-x^2$とし、
曲線$y=f(x)$をC、直線$y=2ax-1$を$l$とする。以下の問いに答えよ。
(1)Cとlの共有点の個数を求めよ。
(2)Cとlがちょうど2個の共有点をもつとする。Cとlで囲まれた図形の面積を求めよ。

2022神戸大学文系過去問
この動画を見る 

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の2直線$L_1,L_2$は直交し、交点のx座標は$\frac{3}{2}$である。
また、$L_1,L_2$は共に曲線$C:y=\frac{x^2}{4}$に接している。このとき、$L_1,L_2$およびCで
囲まれる図形の面積を求めよ。

2022京都大学文系過去問
この動画を見る 

【数Ⅱ】積分で面積が求まる理由【面積を表すことが先、積分が後。区分求積法で積分を使わず面積を計算しよう】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
積分で面積が求まる理由に関して解説していきます.
この動画を見る 

福田の数学〜中央大学2021年理工学部第1問〜斜回転

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$放物線$C:y=x^2$上の点$(a,\ a^2)$ $(a \gt 0)$における法線lの方程式を$y=f(x)$
とおくと、$f(x)=\boxed{\ \ ア\ \ }$となる。またCとlの交点のうちPと異なる方の点Qを
求めると、$Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)$となる。以下、Cとlで囲まれた部分をDとし、
Dをlの周りに1回転して得られる回転体の体積$V(a)$を求める。Dに含まれるl上
の点を$R(t,\ f(t))$ $(\boxed{\ \ イ\ \ }$ $\leqq t \leqq a)$とおく。Rを通りlに垂直な直線は
$y=2a(x-t)+f(t)$で与えられる。この直線と$y=x^2$の2つの交点のうち
Dに含まれる方の点Sのx座標は$x=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}$ となる。このとき
線分RSの長さ$r=g(t)$は$g(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})$となる。
線分QRの長さ$s=h(t)$は$h(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })$で与えられるので、
$V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt$
$=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt$
となる。ここで$u=\sqrt{a-t}$とおいて置換積分を行えば
$V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }$
が求まる。さらに、$a \gt 0$の範囲で$a$を動かすとき、$\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty$
であり、$V(a)$を最小にするaの値は$a=\boxed{\ \ キ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
ⓐ$-\frac{2}{a}(x-a)+a^2$ ⓑ$-\frac{1}{a}(x-a)+a^2$ ⓒ$-\frac{1}{2a}(x-a)+a^2$ ⓓ$-2a(x-a)+a^2$

$\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }$の解答群
ⓐ$-\frac{a^2-1}{a}$ ⓑ$-\frac{2a^2-1}{2a}$ ⓒ$-\frac{a^2+1}{a}$ ⓓ$-\frac{2a^2+1}{2a}$
ⓔ$\frac{\sqrt{a^2+4}}{2}$ ⓕ$\sqrt{a^2+1}$ ⓖ$\sqrt{4a^2+1}$ ⓗ$2a$
ⓘ$\frac{\sqrt{4a^2+1}}{2a}$ ⓙ$\frac{\sqrt{a^2+4}}{a}$ ⓚ$\frac{\sqrt{a^2+1}}{a}$ ⓛ$\frac{\sqrt{a^2+1}}{2a}$
ⓜ$\sqrt{\frac{2a^2+1}{2a}}$ ⓝ$\sqrt{\frac{4a^2+1}{2a}}$ ⓞ$\sqrt{\frac{2a^2+1}{a}}$ ⓟ$\sqrt{\frac{4a^2+1}{a}}$

$\boxed{\ \ カ\ \ }$の解答群
$ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi$

$\boxed{\ \ キ\ \ }$の解答群
$ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4$

2021中央大学理工学部過去問
この動画を見る 

19神奈川県教員採用試験(数学:面積の最小値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#その他#数学(高校生)#その他
指導講師: ますただ
問題文全文(内容文):
$y=x^2-5x+4$と$y=m(n-2)$で囲まれた面積の最小値とそのときの$m$の値を求めよ.

19神奈川県教員採用試験(数学:面積の最小値)過去問
この動画を見る 
PAGE TOP