【数学B/平面ベクトル】ベクトルの成分表示と大きさ - 質問解決D.B.(データベース)

【数学B/平面ベクトル】ベクトルの成分表示と大きさ

問題文全文(内容文):
動画内の図のベクトル$\vec{ a },\vec{ b },\vec{ c },\vec{ d },\vec{ e }$を成分で表し、それぞれ大きさを求めよ
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
動画内の図のベクトル$\vec{ a },\vec{ b },\vec{ c },\vec{ d },\vec{ e }$を成分で表し、それぞれ大きさを求めよ
投稿日:2022.05.03

<関連動画>

19京都府教員採用試験(数学:高4番 ベクトル・三角関数)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
4⃣$OA=2\sqrt2,OB=4,cos\angle AOB=\frac{\sqrt2}{4}$の△OABにおいて
|$(cost+sint)\overrightarrow{ OA }+(cost-sint)\overrightarrow{ OB }$|
の最大値とそのときのtの値を求めよ。
$(0 \leqq t \leqq \frac{\pi}{4})$
この動画を見る 

福田の数学〜立教大学2024年経済学部第3問〜ベクトルと平面幾何

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
この動画を見る 

【数検2級】高校数学:数学検定2級2次:問題4

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学検定#数学検定2級#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、$\overrightarrow{ AB }=\vec{ b }$ ,$\overrightarrow{ AC }=\vec{ c }$として、次の問いに答えなさい。
(1) $\overrightarrow{ AD }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
(2) $\overrightarrow{ AI }$を$\vec{ b }$ ,$\vec{ c }$を用いて表しなさい。
この動画を見る 

07三重県教員採用試験(数学:9番 球面,点と平面の距離)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
球面$S:x^2+y^2+z^2-4x+8z=k$の平面
$\alpha:x-2y-z=-6$による切り口の面積が
$6\pi$のとき,$k$の値を求めよ.
この動画を見る 

【わかりやすく】内分点の位置ベクトルの頻出問題(数学B・位置ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
三角形$ABC$において、辺$AB$の中点を$D$、辺$AC$を$3:2$に内分する点を$E$とし、線分$CD,BE$の交点を$P$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AP }$を$\vec{ b },\vec{ c }$を用いて表せ。
この動画を見る 
PAGE TOP