【数B】【数列】その他の数列2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】その他の数列2 ※問題文は概要欄

問題文全文(内容文):
次の和 $S$ を求めよ。
$(1)\, S=1\cdot 1+2\cdot 5+3\cdot 5+\cdots +n\cdot 5^{n-1}$
$(2)\, S=1+4x+7x^2+\cdots+(3n-2)x^{n-1}$
チャプター:

00:00 OP
01:30 (1)の解説
04:12 (2)の解説

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和 $S$ を求めよ。
$(1)\, S=1\cdot 1+2\cdot 5+3\cdot 5+\cdots +n\cdot 5^{n-1}$
$(2)\, S=1+4x+7x^2+\cdots+(3n-2)x^{n-1}$
投稿日:2025.03.17

<関連動画>

慶應義塾大(経済)漸化式 特性方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$
$a_{n+1}=2a_n^2$

(1)
一般項$a_n$1を求めよ

(2)
$a_n \lt 10^{60}$を満たす最大の$n$
$log_{10}2=0.3010$

出典:2005年慶應義塾大学経済学部 過去問
この動画を見る 

福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る 

【数B】【数列】自然数の式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。
$6^n+4= (5+1)^n+4$と変形することで、$6^n+4$が$5$の倍数であることを、二項定理を利用して証明せよ。
この動画を見る 

【高校数学】 数B-57 等差数列とその和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
各項に一定の数$d$を加えると,次の項が得られるとき,
この数列といい,$d$を①という.
このとき,すべての自然数$n$について,②$a_n+1=\quad $が成り立つ.
また,初項$a$,公差$d$の等差数列$\{a_n\}$の一般項は③$a_n=\quad $で
求めることができる.

次の等差数列の$\Box$に適する数を入れ,一般項を求めよ.

④$3,5,7,\Box,・・・$

⑤$\Box,11,8,5,・・・$

⑥$11,\Box,25,・・・$
この動画を見る 

【数B】数学的帰納法が意味不明な人へ【新しいイメージで考える】

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】数学的帰納法解説動画です
-----------------
$1^2+3^2+5^2+…+(2n-1)^2=$
$\displaystyle \frac{1}{2}n(2n-1)(2n+1)$を証明せよ
この動画を見る 
PAGE TOP