17大阪府教員採用試験(数学:因数分解・整数問題) - 質問解決D.B.(データベース)

17大阪府教員採用試験(数学:因数分解・整数問題)

問題文全文(内容文):
(1)$x^2-6y^2+xy+5x+5y+6$を因数分解せよ。
(2)$x^2-6y^2+xy+5x+5y+9=0$をみたす整数の組(x,y)を求めよ。
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)$x^2-6y^2+xy+5x+5y+6$を因数分解せよ。
(2)$x^2-6y^2+xy+5x+5y+9=0$をみたす整数の組(x,y)を求めよ。
投稿日:2020.06.18

<関連動画>

【循環小数(じゅんかんしょうすう)とは…!】確率:京都府公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#数と式#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
さいころを2回投げた.
1回目の出目は$a$であり,2回目の出目は$b$であった.
$\dfrac{a}{b}$の値が循環小数になる確率を求めよ.
※さいころの目の出方は,同様に確からしい.

京都府高校過去問
この動画を見る 

5つの正方形

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
5つの正方形
x=?
*図は動画内参照
この動画を見る 

連立三元二次方程式 要ちょい工夫

アイキャッチ画像
単元: #数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
解け
$
\begin{eqnarray}
\left\{
\begin{array}{l}
xy +x+ y = 49 \\
yz + y + z = 47\\
zx + z+x = 53
\end{array}
\right.
\end{eqnarray}
$
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(2)〜関数の集合と条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\left\{x|x>0\right\}$を定義域とする関数$f(x)$の集合Aに対する以下の3つの条件を考える。
(P)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)+g(x)$もAの要素である。
(Q)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)g(x)$もAの要素である。
(R)$\alpha$が0でない定数で関数$f(x)$がAの要素ならば、関数$\alpha f(x)$もAの要素である。
Aを以下の(i)~(iv)の集合とするとき、条件(P),(Q),(R)のうち成り立つものをすべて解答欄にマークせよ。
(i)$f(1)$=0 を満たす関数$f(x)$全体の集合
(ii)$f(\alpha)$=0 となる正の実数$\alpha$が存在する関数$f(x)$全体の集合
(iii)全ての正の実数$x$に対して$f(x)$>0 が成り立つ関数$f(x)$全体の集合
(iv)定義域$\left\{x|x>0\right\}$のどこかで連続でない関数$f(x)$全体の集合
この動画を見る 

0.9999999‥‥=1?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$は1桁の自然数である.これを解け.
$\sqrt{0.AAA・・・・・・}=0.BBB・・・・・・$
この動画を見る 
PAGE TOP