福田の数学〜京都大学2025文系第2問〜恒等式 - 質問解決D.B.(データベース)

福田の数学〜京都大学2025文系第2問〜恒等式

問題文全文(内容文):

$\boxed{2}$

実数$a,b$についての次の条件(*)を考える。

(*)ある実数係数の$2$次式$f(x)$と、

ある実数$c$に対して、

$x$についての恒等式

$\dfrac{1}{8}x^4+ax^3+bx^2=f(f(x))+c \cdots ①$

が成り立つ。

この条件(*)を満たす点$(a,b)$全体の集合を

座標平面上に図示せよ。

$2025$年京都大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a,b$についての次の条件(*)を考える。

(*)ある実数係数の$2$次式$f(x)$と、

ある実数$c$に対して、

$x$についての恒等式

$\dfrac{1}{8}x^4+ax^3+bx^2=f(f(x))+c \cdots ①$

が成り立つ。

この条件(*)を満たす点$(a,b)$全体の集合を

座標平面上に図示せよ。

$2025$年京都大学文系過去問題
投稿日:2025.03.17

<関連動画>

福田のおもしろ数学314〜条件付き循環形式の不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
$abc=1$を満たす正の数$a, b, c$に対して$\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\leqq 1$であることを示せ。
この動画を見る 

【高校数学】部分分数分解の分母に二乗があるパターン

アイキャッチ画像
単元: #恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る 

慶應大 簡単すぎたので1問付け加えてみた

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023慶応義塾大学過去問題
$P(x)=\displaystyle\sum_{n=1}^{20}nx^n=20x^{20}+19x^{19}+$
$\cdots+2x^2+x$
を①$x-1$,②$x^2-1$で割った余り

おまけ
$x^3-1$で割った余り
この動画を見る 

【数Ⅱ】式と証明:二項定理 覚え方編

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$(a+b)^n$を一般項をr番目として、二項定理を用いて展開しなさい。表記する際には、第1,2,3項と第r項,そして第n-2,n-1,n項を表すこと。なお、a,b,n,rの文字は用いて表してよい。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(4)〜無限級数の和と部分分数分解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)次の無限級数の和は自然数となる。その自然数を求めよ。
$\sum_{n=6}^{\infty}\frac{1800}{(n-5)(n-4)(n-1)n}$

2022早稲田大学教育学部過去問
この動画を見る 
PAGE TOP