問題文全文(内容文):
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.08