問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (3)\ aを正の定数とし、不等式\\
|x^2-ax+3| \leqq 1\\
の解を実数の範囲で考える。\\
0 \lt a \lt \boxed{\ \ ナ\ \ }のとき、この不等式の解は存在しない。\\
\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }のとき、この不等式の解は\\
ある実数p,qによってp \leqq x \leqq qと表される。\\
a \gt \boxed{\ \ ニ\ \ }のときこの不等式の解は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{2}} (3)\ aを正の定数とし、不等式\\
|x^2-ax+3| \leqq 1\\
の解を実数の範囲で考える。\\
0 \lt a \lt \boxed{\ \ ナ\ \ }のとき、この不等式の解は存在しない。\\
\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }のとき、この不等式の解は\\
ある実数p,qによってp \leqq x \leqq qと表される。\\
a \gt \boxed{\ \ ニ\ \ }のときこの不等式の解は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (3)\ aを正の定数とし、不等式\\
|x^2-ax+3| \leqq 1\\
の解を実数の範囲で考える。\\
0 \lt a \lt \boxed{\ \ ナ\ \ }のとき、この不等式の解は存在しない。\\
\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }のとき、この不等式の解は\\
ある実数p,qによってp \leqq x \leqq qと表される。\\
a \gt \boxed{\ \ ニ\ \ }のときこの不等式の解は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{2}} (3)\ aを正の定数とし、不等式\\
|x^2-ax+3| \leqq 1\\
の解を実数の範囲で考える。\\
0 \lt a \lt \boxed{\ \ ナ\ \ }のとき、この不等式の解は存在しない。\\
\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }のとき、この不等式の解は\\
ある実数p,qによってp \leqq x \leqq qと表される。\\
a \gt \boxed{\ \ ニ\ \ }のときこの不等式の解は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.08