【数Ⅰ】【2次関数】点の通過 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】点の通過 ※問題文は概要欄

問題文全文(内容文):
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。

問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
チャプター:

0:00 問題1(1)の解説
2:46 問題1(2)の解説
4:41 問題2(1)の解説
9:37 問題2(2)の解説

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。

問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
投稿日:2024.11.16

<関連動画>

どっちがでかい?階乗の累乗根

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きい?
$\sqrt[8]{8!}$ VS $\sqrt[7]{7!}$
この動画を見る 

【高校数学】  数Ⅰ-49  2次関数の決定①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす2次関数を求めよう。

①頂点が(1.-2)で、点(2、-3)を通る。
②グラフの軸がx=-1で、2点(-2.9)(1.3)を通る。
③X=2で最小値-4をとり、X=4のときy=8である。
この動画を見る 

福田の数学〜北海道大学2025文系第2問〜数え上げと余弦定理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

整数$a,b,c$は条件

$2\leqq a \lt b \lt c \leqq 6$を満たすとする。

(1)不等式$a+b\gt c$を満たすような

$(a+b+c)$をすべて挙げよ。

(2)不等式$a^2+b^2\geqq c^2$を満たすような

$(a+b+c)$をすべて挙げよ。

(3) (2)で求めた$(a,b,c)$について、

頂点$A,B,C$と向かい合う辺の長さがそれぞれ

$a,b,c$で与えられる$\triangle ABC$を考える。

このようなすべての$\triangle ABC$について

$\cos \angle ACB$を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(2)〜条件付き最大最小問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)2つの実数$x$,$y$が$x^2$+$y^2$=1 を満たすとき、$z$=2$x$+$y$のとりうる値の範囲は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

【データの分析③】共通テスト数学に向けて1週間でサクッと復習!【平均値】#データの分析 #平均値 #高校数学 #shorts

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析のサクッと復習動画を毎日17時にアップしていきます!
この動画を見る 
PAGE TOP