【見るだけで点数UP】共通テスト数学のコツ - 質問解決D.B.(データベース)

【見るだけで点数UP】共通テスト数学のコツ

問題文全文(内容文):
共通テスト数学のコツ(伸ばしやすい単元)紹介動画です
単元: #数A#場合の数と確率#確率#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学のコツ(伸ばしやすい単元)紹介動画です
投稿日:2023.08.11

<関連動画>

福田の数学〜中央大学2023年理工学部第1問〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 さいころを2回ふって出た目の数を順にa, bとし、複素数α, β
α=cosaπ3+isinaπ3, β=cosbπ3+isinbπ3
と定める(iは虚数単位)。また、αβの絶対値をd=|αβ|とおく。
(1)dのとりうる値は、小さいものから順に0,     ,     ,     である。
d=0,     ,     ,     が成り立つ確率はそれぞれ    ,     ,     ,     である。
(2)αβが実数となる確率は    であり、αβが実数という条件の下でd    が成り立つ条件付き確率は    である。
(3)α2=β3という条件の下でα+βの虚部が正となる条件付き確率は    である。
この動画を見る 

福田の数学〜北海道大学2024年理系第2問〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面と呼ぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行をn回行ったとき、持ち点が2以下である確率を求めよ。ただし、nは2以上の自然数とする。
(2)この試行を4回行って持ち点が10以上であった時に、さらにこの試行を2回行って持ち点が17以上である条件付き確率を求めよ。
この動画を見る 

福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 nを正の整数とし、C1,...,Cnn枚の硬貨とする。各k=1,...,nに対し、硬貨Ckを投げて表が出る確率をpk、裏が出る確率を1-pkとする。このn枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)pk=13 (k=1,...,n)のとき、このゲームで成功する確率Xnを求めよ。
(2)pk=12(k+1) (k=1,...,n)のとき、このゲームで成功する確率Ynを求めよ。
(3)n=3m(mは正の定数)でk=1,...,3mに対して
pk={13m(k=1,...,m)   23m(k=m+1,...,2m)1m(k=2m+1,...,3m)
とする。このゲームで成功する確率をZ3mとするとき、limmZ3m を求めよ。
この動画を見る 

【数学】確率の求め方間違っていませんか?確率の前提の話 前編

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?

答えに違いはある??
この動画を見る 

【高校数学】同じものを含む順列の例題~最短経路の問題~ 1-11.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
右の図のような街路で、PからQまで行く最短経路のうち、
次の各場合は何通りあるか。

(1)総数

(2)Rを通る経路

(3)R, Sをともに通る経路

(4)RまたはSを通る経路

(5)R, Sをともに通らない経路

(6)☆印の箇所を通らない経路
この動画を見る 
PAGE TOP preload imagepreload image