福田のわかった数学〜高校2年生056〜通過範囲(1)直線の通過範囲 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生056〜通過範囲(1)直線の通過範囲

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 通過範囲(1)\\
mが全ての実数を動くとき、直線\\
y=mx+m^2\\
の通過する領域を図示せよ。
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 通過範囲(1)\\
mが全ての実数を動くとき、直線\\
y=mx+m^2\\
の通過する領域を図示せよ。
\end{eqnarray}
投稿日:2021.09.13

<関連動画>

数学「大学入試良問集」【7−5 実数解と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学#大阪市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$a,b$に対し、$x$についての2次方程式
$x^2-2ax+b=0$
は、$0 \leqq x \leqq 1$の範囲に少なくとも1つの実数解をもつとする。
このとき、$a,b$が満たす条件を求め、点$(a,b)$の存在する範囲を図示せよ。
この動画を見る 

ただの4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(3x-2)^4+(3x-4)^4=16$
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$自然数$a,b$に対し、3次関数$f_{a,b}(x),g_{a,b}(x)$を
$f_{a,b}(x)=x^3+3ax^2+3bx+8$
$g_{a,b}(x)=8x^3+3bx^2+3ax+1$
で定める。次の問いに答えよ。
(1)次の条件$(\textrm{I})(\textrm{II})$の両方を満たす自然数の組(a,b)
で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{I})f_{a,b}(x)$が極値をもつ
$(\textrm{II})g_{a,b}(x)$が極値をもつ
(2)3次方程式$f_{a,b}(x)=0$の3つの解が$\alpha,\beta,\gamma$であるとき
3次方程式$g_{a,b}(x)=0$の解を$\alpha,\beta,\gamma$で表せ。
(3)次の条件$(\textrm{III})$を満たす自然数の組$(a,b)$で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{III})$3次方程式$f_{a,b}(x)=0$が相異なる3つの実数解をもつ。

2022早稲田大学教育学部過去問
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+\dfrac{5}{\sqrt a}=26$
$a^2-27a+10$の値を求めよ.
この動画を見る 

早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。

早稲田大過去問
この動画を見る 
PAGE TOP