山形大 漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

山形大 漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
山形大学過去問題
$a_1 = -1$ $\quad$ $n=1,2,3\cdots$
$2\displaystyle \sum_{k=1}^{n}a_k=3a_{n+1}-2a_n-1$
一般項$a_n$を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
$a_1 = -1$ $\quad$ $n=1,2,3\cdots$
$2\displaystyle \sum_{k=1}^{n}a_k=3a_{n+1}-2a_n-1$
一般項$a_n$を求めよ。
投稿日:2018.05.03

<関連動画>

福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$,  $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。

2017千葉大学理系過去問
この動画を見る 

漸化式 群馬大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0(n\geqq 2)$,$a_n-\dfrac{2S_n^2}{2S_n-1}$であるとする.
一般項$a_n$を求めよ.
$S_n=\displaystyle \sum_{k=1}^n a_k$

1979群馬大(医)過去問
この動画を見る 

【わかりやすく解説】和の記号Σ(シグマ)(数学B/数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(4)$\displaystyle \sum_{k=1}^n (k^2+3k+2)$
この動画を見る 

【高校数学】和の記号・シグマ~数列の和を丁寧に~ 3-8【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 
PAGE TOP