福田の数学〜慶應義塾大学2022年薬学部第1問(2)〜高次方程式の解 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年薬学部第1問(2)〜高次方程式の解

問題文全文(内容文):
(2)a,bは実数とする。xの3次方程式$x^3+(a+4)x^2-3(a+4)x+b=0$
の実数解が$x=3$のみであるとき、aの値の範囲は$\boxed{\ \ エ\ \ }$である。

2022慶應義塾大学薬学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)a,bは実数とする。xの3次方程式$x^3+(a+4)x^2-3(a+4)x+b=0$
の実数解が$x=3$のみであるとき、aの値の範囲は$\boxed{\ \ エ\ \ }$である。

2022慶應義塾大学薬学部過去問
投稿日:2022.02.27

<関連動画>

11三重県教員採用試験(数学:1番 整数問題)

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$p$整数
$x^2-3|x+7p=0$の2つの解$\alpha,\beta$自然数とする。
$\alpha,\beta$が最大となる$p$を求めよ。
この動画を見る 

2024次方程式の解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}+2x^{2023}+3x^{2022}+$$ ……+2024x+2025=0$の$2024$個の解を
$\alpha,\alpha_{2},\alpha_{3}……\alpha_{2024}$とする

$(1-\displaystyle \frac{1}{\alpha_{1}})(1-\displaystyle \frac{1}{\alpha_{2}})……(1-\displaystyle \frac{1}{\alpha_{2024}})$の値を求めよ

出典:OnLineMath Contest
この動画を見る 

複素関数論⑤(コーシー・リーマンの関係式)*20(1),(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論⑤(コーシー・リーマンの関係式)を解説していきます.
この動画を見る 

福田の1日1題わかった数学〜高校2年生第3回〜高次方程式と連立方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\left\{\begin{array}{1}
a^3x+a^2y+az=1\\
b^3x+b^2y+bz=1\\
c^3x+c^2y+cz=1\\
\end{array}\right.$
を解け。

ただし、$a,b,c$は異なる数で$0$でない。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題008〜神戸大学文系数学第1問〜対称式と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#図形と方程式#解と判別式・解と係数の関係#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
s,tを$s \lt t$をみたす実数とする。座標平面上の3点$A(1,2),B(s,s^2),C(t,t^2)$が一直線上にあるとする。以下の問いに答えよ。
(1)sとtの関係式を求めよ。
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。

神戸大学文系過去問
この動画を見る 
PAGE TOP