【数C】【空間ベクトル】四面体OABCにおいて、OA=OB、→OC⊥→ABとする。(1) AC=BCであることを証明せよ(2) 三角形ABCの重心をGとするとき、→OG⊥→ABであることを証明せよ - 質問解決D.B.(データベース)

【数C】【空間ベクトル】四面体OABCにおいて、OA=OB、→OC⊥→ABとする。(1) AC=BCであることを証明せよ(2) 三角形ABCの重心をGとするとき、→OG⊥→ABであることを証明せよ

問題文全文(内容文):
四面体OABCにおいて、OA=OB、
OC⊥ABとする。
(1) AC=BCであることを証明せよ
(2) 三角形ABCの重心をGとするとき、OG⊥ABであることを証明せよ
チャプター:

0:00 問題概要
0:25 (1)解説 ベクトルの大きさが出てきたらとりあえず2乗する
1:55 2乗されているもの同士の変形について
2:23 (2)解説

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、OA=OB、
OC⊥ABとする。
(1) AC=BCであることを証明せよ
(2) 三角形ABCの重心をGとするとき、OG⊥ABであることを証明せよ
投稿日:2025.10.28

<関連動画>

【平面の方程式の基礎】平面の方程式は直線の方程式と同じように理解できます〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
平面の方程式について解説します。
この動画を見る 

数学「大学入試良問集」【14−14四面体の体積•平面と垂直な直線】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
空間内に4点$A(0,0,0),B(2,1,1),C(-2,2,-4),D(1,2,-4)$がある。
(1)
$\angle BAC=\theta$とおくとき、$\cos\theta$の値と$\triangle ABC$の面積を求めよ。

(2)
$\overrightarrow{ AB }$と$\overrightarrow{ AC }$の両方に垂直なベクトルを1つ求めよ。

(3)
点$D$から、3点$A,B,C$を含む平面に垂直な直線を引き、その交点を$E$とするとき、線分$DE$の長さを求めよ。

(4)
四面体$ABCD$の体積を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題071〜東京医科歯科大学2017年度医学部第2問〜空間における球面と軌跡の問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ xyz空間において、点O(0, 0, 0)と点A(0, 0, 1)を結ぶ線分OAを直径にもつ球面を$\sigma$とする。このとき以下の各問に答えよ。
(1) 球面$\sigma$の方程式を求めよ。
(2) xy平面上にあってOと異なる点Pに対して、線分APと球面$\sigma$との交点をQとするとき、$\overrightarrow{ OQ } \bot \overrightarrow{ AP }$を示せ。
(3) 点S(p, q, r)を$\overrightarrow{OS}・\overrightarrow{ AS }=-|\overrightarrow{ OS }|^2$を満たす、xy平面上にない定点とする。$\sigma$上の点Qが$\overrightarrow{ OS } \bot \overrightarrow{ SQ }$を満たしながら動くとき、直線AQとxy平面上の交点Pはどのような図形を描くか。p, q, rを用いて答えよ。

2017東京医科歯科大学医学部過去問
この動画を見る 

【数B】空間ベクトル:~正射影ベクトルとそれを使った演習~ A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ。
この動画を見る 

【数B】空間ベクトル:2直線の交点の位置ベクトル!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、辺ABを1:3に内分する点をL、点OCを3:1に内分する点をM、線分CLを3:2に内分する点をN、線分LMとONの交点をPとし、OA=a、OB=b、OC=cとするとき、OPをa,b,cで表せ。
この動画を見る 
PAGE TOP