中2数学「平行四辺形になる条件」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「平行四辺形になる条件」【毎日配信】

問題文全文(内容文):
例題
次の四角形$ABCD$は平行四辺形であると言えますか.
いえる場合は○,いえない場合は×で答えなさい.

(1)$AB=6$cm,CD=6$cm,DA=7$cmの四角形$ABCD$
(2)$\angle A=60°,\angle B=60°,\angle C=120°,\angle D=120°$の四角形$ABCD$
(3)$OA=3$cm,$AC=6$cm,$OB=4$cm,$BD=8$cmの四角形$ABCD$($O$は対角線の交点)
(4)$AD=5$cm,$BC=5$cm,$\angle A=70°$,$\angle B=110°$の四角形$ABCD$
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題
次の四角形$ABCD$は平行四辺形であると言えますか.
いえる場合は○,いえない場合は×で答えなさい.

(1)$AB=6$cm,CD=6$cm,DA=7$cmの四角形$ABCD$
(2)$\angle A=60°,\angle B=60°,\angle C=120°,\angle D=120°$の四角形$ABCD$
(3)$OA=3$cm,$AC=6$cm,$OB=4$cm,$BD=8$cmの四角形$ABCD$($O$は対角線の交点)
(4)$AD=5$cm,$BC=5$cm,$\angle A=70°$,$\angle B=110°$の四角形$ABCD$
投稿日:2023.04.18

<関連動画>

ゆく年くる年連立方程式 ちょっと外積

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=66 \\
1009x+1011y=33
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

高校受験でも軌跡の問題あります。滝高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形ABCDにおいて点Qが頂点B→C→D→Aの順に辺上を動くとき
PQの中点が描く図形の長さは?
*図は動画内参照

滝高等学校
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 2発目!『邪魔なものは下に編』 3x+4y=48をx=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3x+4y=48をx=の形にしましょう。
この動画を見る 

【高校受験対策/数学】死守56

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56

①$4-6 \div (-2)$を計算しなさい。

②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。

③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。

④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。

⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。

⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。

⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。

⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る 

指数の連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
2^{x-y}-x-y=0 \\
2-(x+y)^{x-y} = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
この動画を見る 
PAGE TOP