福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域

問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
投稿日:2018.12.28

<関連動画>

福田の数学〜上智大学2022年理工学部第1問(1)〜集合と論理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)x,yを実数とする。次の条件を考える。
$p:xy$が無理数である.
$q:x,y$がともに無理数である.
$r:x,y$の少なくとも一方が無理数である.
$(\textrm{i})$以下から真の命題をすべて選べ。
$(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,y$が命題「$p \Rightarrow q$」の判例であるための必要十分条件を、すべて選べ。
$(\textrm{a})$「$xy$が無理数」かつ「x,yが共に有理数」である。
$(\textrm{b})$「$xy$が有理数」かつ「x,yが共に有理数」である。
$(\textrm{c})$「$xy$が有理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{d})$「$xy$が無理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{e})$「$xy$が無理数、かつxが有理数」または「xyが無理数、かつ、yが有
理数」である。
$(\textrm{f})$「$xy$が無理数、かつxが有理数」または「xyが有理数、かつ、yが有
理数」である。

2022上智大学理工学部過去問
この動画を見る 

22.5°

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$AO^2 =?$
*図は動画内参照

開成高等学校
この動画を見る 

東北大 三角方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \lt 2\pi$方程式を解け

(1)
$\sin^3x+\cos^3x=1$

(2)
$\sin^3x+\cos^3x+\sin x=2$

出典:2007年東北大学 過去問
この動画を見る 

大学入試問題#430「これは、よくありそうな綺麗な問題」 福島大学(2013) #式変形

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$x=\displaystyle \frac{3+\sqrt{ 13 }}{2}$のとき

$\displaystyle \frac{x^{10}-1}{x^5}$の値を求めよ

出典:2013年福島大学 入試問題
この動画を見る 

2021 愛知高校 図形 B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2021愛知高等学校
この動画を見る 
PAGE TOP