福田の数学〜慶應義塾大学2024年看護医療学部第4問〜接線と面積計算 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年看護医療学部第4問〜接線と面積計算

問題文全文(内容文):
$\Large\boxed{4}$ 関数$f(x)$を
$f(x)$=$x^2(x-3)$
で定める。以下に答えなさい。
(1)関数$f(x)$は$x$=$\boxed{\ \ ト\ \ }$で極小値$\boxed{\ \ ナ\ \ }$をとる。
(2)曲線$y$=$f(x)$ を$C$とする。点A(0,1)から曲線$C$へは2本の接線が引ける。
そのうち、傾きが正の接線を$l$とし、傾きが負の接線を$m$とするとき、直線$l$の方程式は$y$=$\boxed{\ \ ニ\ \ }$であり、直線$m$の方程式は$y$=$\boxed{\ \ ヌ\ \ }$である。
(3)曲線$C$と直線$l$の接点Pの$x$座標は$\boxed{\ \ ネ\ \ }$である。また、曲線$C$と直線$l$は2つの共有点をもつが、点Pとは異なる共有点Qの$x$座標は$\boxed{\ \ ノ\ \ }$である。さらに、曲線$C$と直線$l$で囲まれた図形の面積は$\boxed{\ \ ハ\ \ }$である。
単元: #微分とその応用#接線と法線・平均値の定理#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数$f(x)$を
$f(x)$=$x^2(x-3)$
で定める。以下に答えなさい。
(1)関数$f(x)$は$x$=$\boxed{\ \ ト\ \ }$で極小値$\boxed{\ \ ナ\ \ }$をとる。
(2)曲線$y$=$f(x)$ を$C$とする。点A(0,1)から曲線$C$へは2本の接線が引ける。
そのうち、傾きが正の接線を$l$とし、傾きが負の接線を$m$とするとき、直線$l$の方程式は$y$=$\boxed{\ \ ニ\ \ }$であり、直線$m$の方程式は$y$=$\boxed{\ \ ヌ\ \ }$である。
(3)曲線$C$と直線$l$の接点Pの$x$座標は$\boxed{\ \ ネ\ \ }$である。また、曲線$C$と直線$l$は2つの共有点をもつが、点Pとは異なる共有点Qの$x$座標は$\boxed{\ \ ノ\ \ }$である。さらに、曲線$C$と直線$l$で囲まれた図形の面積は$\boxed{\ \ ハ\ \ }$である。
投稿日:2024.04.06

<関連動画>

福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$tを$0 \leqq t \leqq \frac{\pi}{2}$を満たす定数とする。関数
$f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)$
について、以下の問いに答えよ。
(1)$t=\frac{\pi}{6}$のとき$y=f(x) (0 \leqq x \leqq \pi)$のグラフを描け。

(2)$y=f(x) (0 \leqq x \leqq \pi)$のグラフとx軸、y軸および直線$x=\pi$
で囲まれた図形の面積をSとする。Sをtを用いて表せ。

(3)tが$\leqq t \leqq \frac{\pi}{2}$の範囲を動くときのSの最大値と最小値を求めよ。

2021青山学院大学理工学部過去問
この動画を見る 

大学入試問題#570「ほんまにええ問題や~~」 By にっし~Diaryさん #解の個数

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x$の方程式
$(x^2-6x+8)^2-k(x^2-6x+8)+4=0$の実数解の個数を調べよ。
この動画を見る 

【数Ⅲ-158】定積分で表された関数①

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。

①$\int_a^x \frac{t}{1+e^{2t}}dt$

➁$\int_0^{x} (x-t)e^{2t}dt$

③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る 

信州大 4次関数に2点で接する直線 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#数学(高校生)#信州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$y=x^4-x^2+x$に相異なる2点で接する直線の方程式を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$接線(2) 媒介変数表示の接線
$\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.$
で表される曲線の$\theta=\frac{3\pi}{2}$のときの点Pにおける接線を求めよ。
この動画を見る 
PAGE TOP