福田の数学〜慶應義塾大学2024年看護医療学部第4問〜接線と面積計算 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年看護医療学部第4問〜接線と面積計算

問題文全文(内容文):
$\Large\boxed{4}$ 関数$f(x)$を
$f(x)$=$x^2(x-3)$
で定める。以下に答えなさい。
(1)関数$f(x)$は$x$=$\boxed{\ \ ト\ \ }$で極小値$\boxed{\ \ ナ\ \ }$をとる。
(2)曲線$y$=$f(x)$ を$C$とする。点A(0,1)から曲線$C$へは2本の接線が引ける。
そのうち、傾きが正の接線を$l$とし、傾きが負の接線を$m$とするとき、直線$l$の方程式は$y$=$\boxed{\ \ ニ\ \ }$であり、直線$m$の方程式は$y$=$\boxed{\ \ ヌ\ \ }$である。
(3)曲線$C$と直線$l$の接点Pの$x$座標は$\boxed{\ \ ネ\ \ }$である。また、曲線$C$と直線$l$は2つの共有点をもつが、点Pとは異なる共有点Qの$x$座標は$\boxed{\ \ ノ\ \ }$である。さらに、曲線$C$と直線$l$で囲まれた図形の面積は$\boxed{\ \ ハ\ \ }$である。
単元: #微分とその応用#接線と法線・平均値の定理#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数$f(x)$を
$f(x)$=$x^2(x-3)$
で定める。以下に答えなさい。
(1)関数$f(x)$は$x$=$\boxed{\ \ ト\ \ }$で極小値$\boxed{\ \ ナ\ \ }$をとる。
(2)曲線$y$=$f(x)$ を$C$とする。点A(0,1)から曲線$C$へは2本の接線が引ける。
そのうち、傾きが正の接線を$l$とし、傾きが負の接線を$m$とするとき、直線$l$の方程式は$y$=$\boxed{\ \ ニ\ \ }$であり、直線$m$の方程式は$y$=$\boxed{\ \ ヌ\ \ }$である。
(3)曲線$C$と直線$l$の接点Pの$x$座標は$\boxed{\ \ ネ\ \ }$である。また、曲線$C$と直線$l$は2つの共有点をもつが、点Pとは異なる共有点Qの$x$座標は$\boxed{\ \ ノ\ \ }$である。さらに、曲線$C$と直線$l$で囲まれた図形の面積は$\boxed{\ \ ハ\ \ }$である。
投稿日:2024.04.06

<関連動画>

【数Ⅲ】微分法:三角関数の微分公式+演習

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう。
①$y=2\cos\dfrac{5x}{2}\sin\dfrac{x}{2}$
②$y=\sin^3 x$
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第3問〜関数の増減と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
関数
$f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x$
について以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$f'(x) \gt 0$ となるxの値の範囲を求めよ。
(3)\ f(x)の増減を調べ、極値を求めよ。

2022青山学院大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系081〜グラフを描こう(3)対数関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(3)

$y=x(\log x-1)^2$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、$f(x)=x^3-3ax$とする。区間$-1 \leqq x \leqq 1$における
$|f(x)|$の最大値をMとする。Mの最小値とそのときのaの値を求めよ。

2016一橋大学文系過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$関数$f(x)=\frac{1}{2}(x+\sqrt{2-3x^2})$の定義域は$-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$であり、
$f(x)$は$x=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$のとき、
最大値$\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$をとる。曲線$y=f(x)$、

直線$y=2x$およびy軸で囲まれた図形の面積は$\boxed{\ \ ケ\ \ }$となる。

$\boxed{\ \ ケ\ \ }$の解答群
$⓪\frac{\sqrt3}{18}\pi  ①\frac{\sqrt3}{36}\pi  ②\frac{\sqrt3}{72}\pi  ③\frac{1}{6}+\frac{\sqrt3}{36}\pi  ④\frac{1}{24}+\frac{\sqrt3}{36}\pi$
$⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi  ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi  ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi  ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi  ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi$
この動画を見る 
PAGE TOP