大学入試問題#915「減点祭りの問題」 #京都大学1965 #積分方程式 - 質問解決D.B.(データベース)

大学入試問題#915「減点祭りの問題」 #京都大学1965 #積分方程式

問題文全文(内容文):
$x \gt 1$とする。
$\displaystyle \int_{1}^{x} (x-t)f(t)dt=x^4-2x^2+1$を満たす整式$f(t)$を定めよ。

出典:1965年京都大学
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 1$とする。
$\displaystyle \int_{1}^{x} (x-t)f(t)dt=x^4-2x^2+1$を満たす整式$f(t)$を定めよ。

出典:1965年京都大学
投稿日:2024.08.26

<関連動画>

大学入試問題#553「誘導なかったら、萎える」 東邦大学医学部(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
(1)
$\alpha=\displaystyle \frac{\pi}{4},\beta=\displaystyle \frac{3\pi}{4}$のとき
$\tan\displaystyle \frac{\alpha}{2}+\tan\displaystyle \frac{\beta}{2}$の値を求めよ

(2)
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^2-\sqrt{ 2 }x+1}$

出典:2013年東邦大学医学部 入試問題
この動画を見る 

大学入試問題#556「技はかかりそうだけど、正面突破」 東京帝国大学大正14年 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$

出典:大正14年東京大学 入試問題
この動画を見る 

#61数検1級1次「よくできた問題」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$(x-1)^7-(x^7-1)$を実数係数の範囲で因数分解せよ

出典:数検1級1次
この動画を見る 

#広島市立大学2014#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2}{2-x} dx$

出典:2014年広島市立大学
この動画を見る 

大学入試問題#207 埼玉大学(2006) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int -4\tan\ x\ log(\cos^2x)dx$を計算せよ。

出典:2006年埼玉大学 入試問題
この動画を見る 
PAGE TOP