数I 2次関数の最大に関する問題 (他の問題の解説もあり) - 質問解決D.B.(データベース)

数I 2次関数の最大に関する問題  (他の問題の解説もあり)

問題文全文(内容文):
$y=-x^2+4x (a \leqq x \leqq a+2)$
(1)最大値=3となるaの値=?
(2)最大値=4となるaの範囲は?
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=-x^2+4x (a \leqq x \leqq a+2)$
(1)最大値=3となるaの値=?
(2)最大値=4となるaの範囲は?
投稿日:2021.06.10

<関連動画>

気付けば一瞬!!正方形と円

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△BODの面積は?
*図は動画内参照
この動画を見る 

北海道大 二次方程式解と係数 整数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次方程式と2次不等式#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 北海道大学過去問
$x^2-2px+p^2-2p-1=0$の2解を$α、β$とする。
$\displaystyle \frac{1}{2}$・$\displaystyle \frac{(α-β)^2-2}{(α+β)^2+2}$が整数となる実数$P$を全て求めよ
この動画を見る 

東大 数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$

(1)
$a+b$の値は?

(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ

出典:1997年東京大学 過去問
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数$y=-x^2+4ax-2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最大値を求めよ。
(2) 最小値を求めよ。
この動画を見る 

図形と計量 三角比の相互関係の利用【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1)$(\sin\theta+\cos\theta)^2+(\sin\theta-\cos\theta)^2$
(2)$(1-\sin\theta)(1+\sin\theta)-\dfrac{1}{1+\tan^2\theta}$
この動画を見る 
PAGE TOP