慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$

(1)
$\beta$は実数であることを示せ


(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$

(1)
$\beta$は実数であることを示せ


(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
投稿日:2019.03.16

<関連動画>

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a、b、cは実数の定数とする。2次方程式ax²+bx+c=0は次の場合において、虚数解をもたないことを示せ。
(1) b=a+c
(2)a+c=0
(3)aとcが異符号

次の2次方程式の解の種類を判別せよ。ただし、a、bは実数の定数とする。
13x²-2(2a-3b)x+a²+b²=0
この動画を見る 

ただの4次方程式 その2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^4+2x^2-400x=9991$
この動画を見る 

【高校数学】 数Ⅱ-40 解と係数の関係⑦

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$x^2-(m-1)x+m+6=0$がともに2以上である2つの解をもつとき、 定数mの値の範囲を求めよう。

②2次方程式$x^2-2mx+m+2=0$の解の1つがより大きく、他の解がより小さい とき、定数mの値の範囲を求めよう。
この動画を見る 

富山県立大 3次方程式 解が無理数である証明 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2+2x-1=0$
実数解は無理数であることを示せ

出典:富山県立大学 過去問
この動画を見る 

福田のおもしろ数学520〜4次方程式が異なる3つの解をもつ条件

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

方程式

$(x^2-2mx-4(m^2+1))(x^2-4x-2m(m^2+1))=0$

が異なる$3$個の解をもつような

実数$m$をすべて求めよ。
     
この動画を見る 
PAGE TOP