慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$

(1)
$\beta$は実数であることを示せ


(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$

(1)
$\beta$は実数であることを示せ


(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
投稿日:2019.03.16

<関連動画>

18東京都教員採用試験(数学:解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣-(1)
$x^3+x^2+2x-3=0$の解をα、β、γとする。
(1)$α^2+β^2+γ^2$
(2)$α^3+β^3+γ^3$
この動画を見る 

虚数解の6乗が実数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-ax+a=0$は虚数解$\beta$をもち$\beta^6$は実数である.
aの値を求めよ.
この動画を見る 

3乗の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3-333^3 = 444^3 + 555^3$
(xは実数)
x=?

この動画を見る 

大阪市立大 複素数・整数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を自然数とする.
$\omega=a-b\sqrt5 i$
$z=c-d\sqrt5 i$
$-\omega z=11+8\sqrt5 i$

$(a,b,c,d)$をすべて求めよ.

2021大阪市立大過去問
この動画を見る 

【高校数学】 数Ⅱ-32 2次方程式の解と判別式⑤

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎aのを定数とするとき、方程式$ax^2+6x+a-8=0$の解の種類を判別しよう。
この動画を見る 
PAGE TOP