やっぱり指数が好き - 質問解決D.B.(データベース)

やっぱり指数が好き

問題文全文(内容文):
$16^x = 49$
$7^y=64$
$(xy)^{xy} = ?$
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$16^x = 49$
$7^y=64$
$(xy)^{xy} = ?$
投稿日:2022.09.05

<関連動画>

東京理科大 指数方程式 実数解の条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'07東京理科大学過去問題
$9^x+9^{-x}-(a+1)(3^x+3^{-x})-2a^2+8a-4$
$=0$
(1)$a=-5$のとき、解け
(2)実数解をもつaの範囲
この動画を見る 

【数Ⅱ】【指数対数】指数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a$\gt$0,b$\gt$0とする。次の式を計算せよ。
(1)(a$^{\frac{1}{2}}$+a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)(a$^{\frac{1}{2}}$-a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)
(2)(a$^{\frac{x}{3}}$-b$^{-\frac{x}{3}}$)(a$^{\frac{2x}{3}}$+a$^{\frac{x}{3}}$b$^{-\frac{x}{3}}$+b$^{-\frac{2x}{3}}$)

(1)($\sqrt[4]{6}$+$\sqrt[4]{5}$)($\sqrt[4]{6}$-$\sqrt[4]{5}$)
(2)($\sqrt[3]{4}$+$\sqrt[3]{2}$)$^3$+($\sqrt[3]{4}$-$\sqrt[3]{2}$)$^3$

(1) $\sqrt[5]{-32}$
(2) $\sqrt[3]{-\frac{1}{64}}$
(3) $\sqrt[3]{54}$$\times$2$\sqrt[3]{-2}$$\times$$\sqrt[3]{16}$
(4) $\sqrt[3]{-24}$+$\sqrt[3]{81}$)$+$$\sqrt[3]{-3}$

x$^{\frac{1}{3}}$+x$^{-\frac{1}{3}}$=3のとき、x+x$^{-1}$, x$^{3}$+x$^{-3}$の値を求めよ。
この動画を見る 

小数のマイナス乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$0.2^{-2} =?$
この動画を見る 

指数方程式 解は見えちゃうんだよね

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
指数方程式に関して解説していきます。
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$xy平面上の曲線Cを$y=x^2(x-1)(x+2)$とする。
(1)Cに2点で下から接する直線Lの方程式は

$y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}$である。

(2)CとLが囲む図の斜線部分の面積(※動画参照)は

$\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}$となる。

ただし、次の公式を使ってもかまわない(m,nは正の整数)
$\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}$

2022慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP