【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【小学校の学習範囲から始まって】整数:市川高等学校~全国入試問題解法

問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A-2B-2G+L=2021$のとき,自然数の組$(A,B)$をすべて求めよ.
※$G$は1でない自然数とする.

市川高校過去問
投稿日:2022.06.22

<関連動画>

千葉大(医)整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010千葉大学過去問題
k,n自然数
(1)$3^n=k^3+1$
(2)$3^n= k^2-40$
この動画を見る 

津田塾大 基本対称式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.

2016津田塾大過去問
この動画を見る 

4次式の整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
この動画を見る 

千葉大(医)整数問題 良問再投稿

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):

$3^n=k^3+1$


$3^n=k^2-40$
$k,n$自然数

出典:千葉大学大学院医学研究院・医学部 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+2n-1$と$n^5-5$がともに7の倍数となる$n$のうち3桁で最小のものを求めよ.
この動画を見る 
PAGE TOP