福田の数学〜早稲田大学2025商学部第3問〜三角形を一辺を軸として回転させたときの回転体の体積の最大 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025商学部第3問〜三角形を一辺を軸として回転させたときの回転体の体積の最大

問題文全文(内容文):

$\boxed{3}$

空間内の異なる$4$点

$A,B,C,D$が$AD=BC=2$、

$AB=CD=1$を満たし、線分$AD$と線分$BC$が

点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ

$AP:PD=s:(1-s),$

$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$

に内分しているとする。次の問いに答えよ。

(1)$s$を$t$を用いて表せ。

(2)$t$のとりうる値の範囲を求めよ。

(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、

$\triangle ABP$の辺と内部が通過する部分の体積を

$V$とする。$V$の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

空間内の異なる$4$点

$A,B,C,D$が$AD=BC=2$、

$AB=CD=1$を満たし、線分$AD$と線分$BC$が

点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ

$AP:PD=s:(1-s),$

$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$

に内分しているとする。次の問いに答えよ。

(1)$s$を$t$を用いて表せ。

(2)$t$のとりうる値の範囲を求めよ。

(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、

$\triangle ABP$の辺と内部が通過する部分の体積を

$V$とする。$V$の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
投稿日:2025.07.29

<関連動画>

式の変形と三角形   よくありがちな間違い。

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^4+b^4=c^4+2a^2b^2$のとき
△ABCはどんな三角形か?
*図は動画内参照
この動画を見る 

【高校数学】約数の個数と総和の簡単な出し方 1-5.5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
392の正の約数は何個あるか、またその総和を求めよ。
この動画を見る 

灘高校に受かるのは難だけど、この問題は難てこともない問題

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形と4つの半円
斜線部の面積は?
*図は動画内参照

灘高等学校
この動画を見る 

2021 神奈川県 円周角 A

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle AFD=?$
*図は動画内参照

2021神奈川県
この動画を見る 

図形の性質 円の位置関係【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線$ℓ 、m$ と異なる2つの平面$\alpha,\beta$について,
次の記述は常に正しいか。
(1) $\ell⊥\alpha、m⊥\alpha$ならば、$ℓ⊥m$である。
(2) $\ell ⊥\alpha、m⊥\alpha$ならば、$\alpha //\beta$である。
(3) $\ell //\alpha、m//\alpha$ならば、$\ell //m$である。
(4) $\ell //\alpha、m⊥\alpha$ならば、$\ell$と並行で$m$と垂直な直線がある。

正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形$ABCDEF$ について,
辺$AB$ と平行な辺を答えよ。

立方体について、次の問いに答えよ。
(1) 辺$BF$ と垂直な面をすべて答えよ。
(2) 平面 $BFHD$ と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面$ABGH$と垂直な面をすべて答えよ。
この動画を見る 
PAGE TOP