【数B】平面ベクトル:円のベクトル方程式(2点が直径の両端) - 質問解決D.B.(データベース)

【数B】平面ベクトル:円のベクトル方程式(2点が直径の両端)

問題文全文(内容文):
平面上の△OABと任意の点Pに対し、次のベクトル方程式は円を表す。どのような円か。
OP・(OP-AB)=OA・OB
チャプター:

0:00 オープニング
0:05 問題文
0:15 すべてをスモールで表す
0:47 因数分解できそう
1:00 形をそろえる
1:36 名言

単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の△OABと任意の点Pに対し、次のベクトル方程式は円を表す。どのような円か。
OP・(OP-AB)=OA・OB
投稿日:2021.08.30

<関連動画>

【数学B/平面ベクトル】ベクトル方程式の総まとめ

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
点$A(2,4),\vec{ d }=(1,3)$のとき、点$A$を通り、$\vec{ d }$が方向ベクトルである直線の媒介変数表示を、媒介変数を$t$として求めよ。
また、$t$を消去した式で表せ。


(2)
2点$A(-1,2),$ $B(3,5)$を通る直線の媒介変数表示を、媒介変数を$t$として求めよ。


(3)
点$A(-1,2),\vec{ n }=(3,4)$のとき、点$A$を通り、$\vec{ n }$が法線ベクトルである直線の方程式を求めよ。


(4)
点$A(1,2)$を中心とし、半径が$3$である円の方程式を、ベクトルを利用して求めよ。
この動画を見る 

【数C】ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle \rm{ABC}$において、$\rm{AB}=3,AC=2, \angle A=60^{ \circ }$,外心を$\rm{O}$とする。$\overrightarrow{{\textrm{AB}}}=\vec{b},\overrightarrow{{\textrm{AC}}}=\vec{c}$とするとき、$\overrightarrow{{\textrm{AO}}}$を$\vec{b},\vec{c}$を用いて表せ。

問題2
平行四辺形$\rm{ABCD}$において、次の等式が成り立つことを証明せよ。
$\rm{2(AB^2+BC^2)=AC^2+BD^2}$

問題3
$\triangle \rm{ABC}$の辺$\rm{BC}$を1:2に内分する点を$\rm{D}$とする。このとき、等式$\rm{2AB^2+AC^2=3(AD^2+2BD^2)}$が成り立つことを証明せよ。
この動画を見る 

【高校数学】 数B-1 有向線分とベクトル

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように①____を指定した線分を有向線分といい、Aを②____、Bを③____という。
そして、位置を気にしないで、④____と⑤____だけで定まる量をベクトルといい、有向線分ABで表されるベクトルを$\overrightarrow{ AB }$と書き表す。
また、ベクトル$\overrightarrow{ AB }$の大きさを⑥____と書き、特に大きさが1であるベクトルを⑦____ベクトルという。
※図は動画内参照
この動画を見る 

数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
この動画を見る 
PAGE TOP