数学「大学入試良問集」【17−3① 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【17−3① 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{1}{2}a_n+\displaystyle \frac{1}{a_n}$ $n=1,2,3,・・・$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \sqrt{ 2 }(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\sqrt{ 2 } \lt \displaystyle \frac{1}{2}(a_n-\sqrt{ 2 })(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{1}{2}a_n+\displaystyle \frac{1}{a_n}$ $n=1,2,3,・・・$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \sqrt{ 2 }(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\sqrt{ 2 } \lt \displaystyle \frac{1}{2}(a_n-\sqrt{ 2 })(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
投稿日:2021.06.18

<関連動画>

福田のわかった数学〜高校3年生理系017〜関数の極限、無理関数の極限(2)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(2)
$\lim_{x \to 1}\displaystyle \frac{\sqrt[3]x-1}{\sqrt x-1}$ を求めよ。
この動画を見る 

大学入試問題#617「極限2本」 関西大学(2021) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}(\displaystyle \frac{1}{3-\sin2x}-\displaystyle \frac{1}{3+\sin2x})$

(2)$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x^2}(\displaystyle \frac{1}{\sqrt{ 3-\sin^22x }}-\displaystyle \frac{1}{\sqrt{ 3+\sin^22x }})$

出典:2021年関西大学 入試問題
この動画を見る 

【数Ⅲ】極限:ロピタルを使って極限を簡単に求める

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\dfrac{1-\cos 3x}{x^2}$を求めよ
この動画を見る 

【数Ⅲ】数列の極限:次の極限値を求めよう。lim[n→∞](1-1/2²)(1-1/3²)…(1-1/n²)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{n\to\infty}\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)・・・\left(1-\dfrac{1}{n^2}\right)$
この動画を見る 

大学入試問題#623「えぐいの見た目だけ」 岩手大学(2021) #極限 僚太さんの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (\displaystyle \frac{x\ \tan\ x}{\sqrt{ \cos2x }-\cos\ x}+\displaystyle \frac{x}{\tan2x})$

出典:2021年岩手大学 入試問題
この動画を見る 
PAGE TOP