大学入試問題#676「たぶん良い問題」 東京理科大学(2017) 定積分 - 質問解決D.B.(データベース)

大学入試問題#676「たぶん良い問題」 東京理科大学(2017) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{4x+1}{x^4+2x^3+x+2}dx$

出典:2017年東京理科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{4x+1}{x^4+2x^3+x+2}dx$

出典:2017年東京理科大学 入試問題
投稿日:2023.12.15

<関連動画>

愛媛大 式の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{ 5 }}{2})^3$の小数部分を$a$
$a^4+5a^3+4a^2+4a$の値を求めよ

出典:2015年愛媛大学 過去問
この動画を見る 

因数分解 大学入試だけど中学生の知識で解ける!福島大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4+x^2+1+2xy-y^2$

福島大学
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(4)〜等比数列となる条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。

2023東京工業大学理系過去問
この動画を見る 

2023京都大学 整式の剰余

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2023}-1$を$x^4+x^3+x^2+x+1$で割ったあまりを求めよ.

2023京都大過去問
この動画を見る 
PAGE TOP