名古屋市立(医)lim(x→0)sinx/x=1証明 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

名古屋市立(医)lim(x→0)sinx/x=1証明 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
名古屋市立大学過去問題
$\displaystyle \lim_{ x \to 0 } \frac{sinx}{x}=1$
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋市立大学過去問題
$\displaystyle \lim_{ x \to 0 } \frac{sinx}{x}=1$
投稿日:2018.04.27

<関連動画>

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系073〜平均値の定理(1)不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(1)
$0 \lt a \lt b$のとき
$1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1$
を証明せよ。
この動画を見る 

京都大 関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$

すべての実数$x$にたいして不等式

$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ

出典:2014年京都大学 過去問
この動画を見る 

東京水産大 微分 4次関数交点と接点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'83東京水産大学過去問題
$f(x)=x^4+4x^3-12x^2+8x+1$上の点A(a,f(a))における接線とf(x)の交点が点Aの両側にあるようなaの範囲
この動画を見る 

東京商船大 微分公式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$

(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ

(2)
$f(x)$の極値を求めよ

出典:東京海洋大学 過去問
この動画を見る 
PAGE TOP