秋田大(医) 整式の剰余 - 質問解決D.B.(データベース)

秋田大(医) 整式の剰余

問題文全文(内容文):
$n$を自然数とし,A,Bを整数とする.
$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れるA,Bの値を求めよ.

秋田大(医)過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,A,Bを整数とする.
$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れるA,Bの値を求めよ.

秋田大(医)過去問
投稿日:2023.02.18

<関連動画>

(x³+x²+x+1)⁷をx²-x+1で割ったあまりを求めよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3+x^2+x+1)^7$を$x^2-x+1$で割ったあまりを求めよ.
この動画を見る 

【そこに解が見えている…!】解と係数の関係:二次方程式(その3)~中学からの二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x^2+x+2=0$の2つの解を$ \alpha,\beta $とし,
$ \alpha^n+\beta^n=S(n)$とおくとき,
$ S(1),S(2),S(3),S(4),S(5)$を求めよ.
この動画を見る 

横浜市立(医)3項間漸化式 良問再投稿

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$

出典:2016年横浜市立大学 医学部 過去問
この動画を見る 

岩手大 複素数 ド・モアブルの定理 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^4-z^3+z^2-z+1=0$のすべての解を極形式で表せ
$\cos 36^{ \circ }$を求めよ

出典:2005年岩手大学 過去問
この動画を見る 

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
この動画を見る 
PAGE TOP