【わかりやすく解説】位置ベクトル(内分・外分・重心)【数学B/平面ベクトル】 - 質問解決D.B.(データベース)

【わかりやすく解説】位置ベクトル(内分・外分・重心)【数学B/平面ベクトル】

問題文全文(内容文):
$\triangle ABC$において、辺$BC$を$2:3$に内分する点を$D$, 辺$BC$を$2:1$に外分する点を$E$とし、三角形の重心を$G$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、次のベクトルを$\vec{ b },\vec{ c }$を用いて表せ。

(1)$\overrightarrow{ AD }$
(2)$\overrightarrow{ AE }$
(3)$\overrightarrow{ AG }$
(4)$\overrightarrow{ GD }$
(5)$\overrightarrow{ DE }$
チャプター:

0:00 今日の問題
0:18 ポイント解説
07:23 問題の解説

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、辺$BC$を$2:3$に内分する点を$D$, 辺$BC$を$2:1$に外分する点を$E$とし、三角形の重心を$G$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、次のベクトルを$\vec{ b },\vec{ c }$を用いて表せ。

(1)$\overrightarrow{ AD }$
(2)$\overrightarrow{ AE }$
(3)$\overrightarrow{ AG }$
(4)$\overrightarrow{ GD }$
(5)$\overrightarrow{ DE }$
投稿日:2022.01.18

<関連動画>

【高校数学】 数B-5 ベクトルの式の計算②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式を満たす$\vec{ x },$を$\vec{ a },\vec{ b }$を用いて表そう。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
2\vec{ x } + \vec{ y } = \vec{ a } \\
\vec{ x } + \vec{ y } = \vec{ b }
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
2\vec{ x } + 3\vec{ y } = \vec{ a } + \vec{ b }\\
\vec{ x } - \vec{ y } = \vec{ a }-\vec{ b }
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校数学】 数B-31 ベクトル方程式⑥

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①A(-1,5)、B(3,3)とする。線分ABの垂直二等分線の方程式を求めよう。

②2通線$x-2y-5=0,3x-y+4=0$のなす角aを求めよう。ただし、$0° \leqq x \leqq 90°$とする。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
aベクトル$+tb$ベクトルの絶対値の最小値を取るtの値について
この動画を見る 

【数C】平面ベクトル:円のベクトル方程式(2点が直径の両端)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の△OABと任意の点Pに対し、次のベクトル方程式は円を表す。どのような円か。
OP・(OP-AB)=OA・OB
この動画を見る 

【数C】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る 
PAGE TOP