【わかりやすく解説】位置ベクトル(内分・外分・重心)【数学B/平面ベクトル】 - 質問解決D.B.(データベース)

【わかりやすく解説】位置ベクトル(内分・外分・重心)【数学B/平面ベクトル】

問題文全文(内容文):
$\triangle ABC$において、辺$BC$を$2:3$に内分する点を$D$, 辺$BC$を$2:1$に外分する点を$E$とし、三角形の重心を$G$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、次のベクトルを$\vec{ b },\vec{ c }$を用いて表せ。

(1)$\overrightarrow{ AD }$
(2)$\overrightarrow{ AE }$
(3)$\overrightarrow{ AG }$
(4)$\overrightarrow{ GD }$
(5)$\overrightarrow{ DE }$
チャプター:

0:00 今日の問題
0:18 ポイント解説
07:23 問題の解説

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、辺$BC$を$2:3$に内分する点を$D$, 辺$BC$を$2:1$に外分する点を$E$とし、三角形の重心を$G$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、次のベクトルを$\vec{ b },\vec{ c }$を用いて表せ。

(1)$\overrightarrow{ AD }$
(2)$\overrightarrow{ AE }$
(3)$\overrightarrow{ AG }$
(4)$\overrightarrow{ GD }$
(5)$\overrightarrow{ DE }$
投稿日:2022.01.18

<関連動画>

福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$0 \lt t \lt 1$とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを
$t:1-t$に内分する点をそれぞれ$A_1,B_1,C_1,D_1$とする。さらに$A_2,B_2,C_2,D_2$および$A_3,B_3,C_3,D_3$を次の条件を満たすように定める。
$(\ 条件\ )k=1,2$について、点$A_{k+1},B_{k+1},C_{k+1},D_{k+1}$はそれぞれ線分$A_kB_k$,
$B_kC_k,C_kD_k,D_kA_k$を$t:1-t$に内分する。
$\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }$とするとき、以下の問いに答えよ。
(1)$\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b }$ を満たす実数p,q,x,yを
tを用いて表せ。
(2)四角形$A_1B_1C_1D_1$は平行四辺形であることを示せ。
(3)$\overrightarrow{ AD }$と$\overrightarrow{ A_3B_3 }$が平行となるようなtの値を求めよ。

2022筑波大学理系過去問
この動画を見る 

数検準1級1次過去問(3番 ベクトル)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#平面上のベクトルと内積#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ $\triangle OAB$において、辺$OA$を$1:1$に内分する点を$D$、辺$OB$を$2:1$に内分する点を$E$とする。線分$BD$と線分$AE$の交点を$F$、$\overrightarrow{ OA }=\overrightarrow{ a }$, $\overrightarrow{ OB }=\overrightarrow{ b }$,$\ |\overrightarrow{ a }|=a$,$ |\overrightarrow{ b }|=b$
として、次の問いに答えよ。
$(1)\overrightarrow{ OF }$を$\overrightarrow{ a }$ , $\overrightarrow{ b }$を用いて表せ。
さらに、$\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF }$ として、以下の問いに答えよ。
$(2)$内積$\overrightarrow{ a }・\overrightarrow{ b }$を$a$, $b$を用いて表せ。
$(3)b=1$のとき、$a$の取りうる値の範囲を求めよ。
$(4)b=1$のとき、$\triangle OAB$の面積$S$の最大値と、そのときの$a$の値を求めよ。
この動画を見る 

【高校数学】 数B-6 ベクトルの平行

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\overrightarrow{ e }$を単位ベクトルとするとき、$\overrightarrow{ e }$と平行で、大きさが5のベクトルを求めよう。

②$|\vec{ a }|=3$のとき、$\overrightarrow{ a }$と平行な単位ベクトルを求めよう。

③$\overrightarrow{ OA }=\overrightarrow{ a },\overrightarrow{ OB }=\overrightarrow{ b },\overrightarrow{ OP }=6\vec{ a }-3\vec{ b },\overrightarrow{ OQ }=2\vec{ a }+\overrightarrow{ b }$であるとき、$\overrightarrow{ PQ }//\overrightarrow{ AB }$であることを示そう。
ただし、$\overrightarrow{ a }≠0,\overrightarrow{ b }≠0$で、$\overrightarrow{ a }$と$\overrightarrow{ b }$は平行でないものとする。
この動画を見る 

数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
この動画を見る 
PAGE TOP