福田の1.5倍速演習〜合格する重要問題006〜名古屋大学2015年理系数学第1問 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題006〜名古屋大学2015年理系数学第1問

問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=x^{-2}2^x(x≠0)$について、$f'(x) \gt 0$となるための
xに関する条件を求めよ。
(2)方程式$2^x=x^2$は相異なる3個の実数解をもつことを示せ。
(3)方程式$2^x=x^2$の解で有理数であるものを全て求めよ。

2015名古屋大学理系過去問
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=x^{-2}2^x(x≠0)$について、$f'(x) \gt 0$となるための
xに関する条件を求めよ。
(2)方程式$2^x=x^2$は相異なる3個の実数解をもつことを示せ。
(3)方程式$2^x=x^2$の解で有理数であるものを全て求めよ。

2015名古屋大学理系過去問
投稿日:2022.11.21

<関連動画>

福田の数学〜早稲田大学2024年理工学部第5問〜媒介変数表示のグラフと回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $xy$平面上において、以下の媒介変数表示をもつ曲線を$C$とする。
$\left\{\begin{array}{1}
x=\sin t+\displaystyle\frac{1}{2}\sin 2t    \\
y=-\cos t-\displaystyle\frac{1}{2}\cos 2t-\frac{1}{2}\\
\end{array}\right.
$
ただし、0≦$t$≦$\pi$とする。
(1)$y$の最大値、最小値を求めよ。
(2)$\displaystyle\frac{dy}{dt}$<0 となる$t$の範囲を求め、$C$の概形を$xy$平面上に描け。
(3)$C$を$y$軸のまわりに1回転してできる立体の体積$V$を求めよ。
この動画を見る 

福田の数学〜絞り込めればなんとかなる!〜明治大学2023年全学部統一ⅠⅡAB第1問(4)〜不等式を満たす自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数$m,n$があり、$1\lt m\lt n$とする。

$\displaystyle (m+\frac{1}{n})(n+\frac{1}{m})\leqq 12$

を満たす$(m,n)$を求めよ。

2023明治大学過去問
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る 

数学「大学入試良問集」【18−7 球に外接する直円錐の最小体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
この動画を見る 

福田の数学〜名古屋大学2024年理系第1問〜接線の本数と整数解

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$=$\sqrt x$+$\displaystyle\frac{2}{\sqrt x}$ ($x$>0)に対して、$y$=$f(x)$のグラフを$C$とする。
(1)$f(x)$の極値を求めよ。
(2)$x$軸上の点P($t$, 0)から$C$にちょうど2本の接線を引くことができるとする。
そのような実数$t$の値の範囲を求めよ。
(3)(2)において、$C$の2つの接点の$x$座標を$\alpha$, $\beta$($\alpha$<$\beta$)とする。$\alpha$, $\beta$がともに整数であるような組($\alpha$, $\beta$)をすべて求めよ。
この動画を見る 
PAGE TOP