14三重県教員採用試験(数学:6番 数列) - 質問解決D.B.(データベース)

14三重県教員採用試験(数学:6番 数列)

問題文全文(内容文):
$\boxed{6}$
$a_1=7,a_{n+1}=2a_n-2n-1$
一般項を求めよ.
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$a_1=7,a_{n+1}=2a_n-2n-1$
一般項を求めよ.
投稿日:2021.07.13

<関連動画>

福田の数学〜立教大学2021年理学部第1問(4)〜数列の和と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)一般項が$a_n=\frac{2}{n(n+2)}$であるような数列$\left\{a_n\right\}$の初項から第n項までの和
を$S_n$とする。$S_n \gt \frac{7}{6}$を満たす最小の自然数$n$は$\boxed{\ \ オ\ \ }$である。

2021立教大学理学部過去問
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(4)3項間の漸化式〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1, a_2=5\\
a_{n+2}=5a_{n+1}-4a_n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1, a_2=5\\
a_{n+2}=4a_{n+1}-4a_n\\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
この動画を見る 

階乗に関する問題 巣鴨高校(改)

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$1!+2!+3!+4!+5!+\cdots +18!+19!+20!$
を計算した結果の下2ケタを求めよ。

巣鴨高等学校(改)
この動画を見る 

福田のおもしろ数学465〜最小公倍数を含んだ3項間漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$x_1=19,x_2=95$

$x_{n+2}=1cm(x_{n+1},x_n)+x_n$

を満たす数列$\{x_n\}$に対して

$x_{2025}$と$x_{2026}$の最大公約数を求めよ。

*$1cm(a,b)$は$a$と$b$の最小公倍数を表す。
      
この動画を見る 
PAGE TOP