場合の数 集合の基本~ベン図を描こう~【さこすけ's サイエンスがていねいに解説】 - 質問解決D.B.(データベース)

場合の数 集合の基本~ベン図を描こう~【さこすけ's サイエンスがていねいに解説】

問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。Uの部分集合A,Bについて、
$A∩B={2}$,(Aの補集合)$∩B={2,4,6,8}$,(Aの補集合)$∩$(Bの補集合)$={1,9}$であるとき、次の集合を求めよ。
(1)$A∪B$       (2)$B$        (3)$A∩$(Bの補集合)

U={$x\vert 1\leqq x\leqq 10$,xは整数}を全体集合とする。Uの部分集合
$A={1,2,3,4,8},B={3,4,5,6},C={2,3,6,7}$について、次の集合を求めよ。
(1)$A∩B∩C$ (2)$A∪B∪C$ (3)$A∩B∩$(Cの補集合) (4)(Aの補集合)$∩B∩$(Cの補集合) (5)($A∩B∩C$の補集合) (6)$(A∪C)∩$(Bの補集合)

$A={1,3,3a-2},B={-5,a+2,a^2-2a+1},A∩B={1,4}$のとき、
定数aの値と和集合$A∪B$を求めよ
チャプター:

0:00オープニング
0:05問題1解説
2:05問題2解説
5:54問題3解説
7:46エンディング

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。Uの部分集合A,Bについて、
$A∩B={2}$,(Aの補集合)$∩B={2,4,6,8}$,(Aの補集合)$∩$(Bの補集合)$={1,9}$であるとき、次の集合を求めよ。
(1)$A∪B$       (2)$B$        (3)$A∩$(Bの補集合)

U={$x\vert 1\leqq x\leqq 10$,xは整数}を全体集合とする。Uの部分集合
$A={1,2,3,4,8},B={3,4,5,6},C={2,3,6,7}$について、次の集合を求めよ。
(1)$A∩B∩C$ (2)$A∪B∪C$ (3)$A∩B∩$(Cの補集合) (4)(Aの補集合)$∩B∩$(Cの補集合) (5)($A∩B∩C$の補集合) (6)$(A∪C)∩$(Bの補集合)

$A={1,3,3a-2},B={-5,a+2,a^2-2a+1},A∩B={1,4}$のとき、
定数aの値と和集合$A∪B$を求めよ
投稿日:2023.04.25

<関連動画>

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

【高校数学】円順列例題2題~とりあえずこれだけ~ 1-7.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
6等分した円の各部分を6色の絵の具をすべて使って塗り分ける方法は何通りあるか。


2⃣
(1)男子2人、女子8人が円形のテーブルの周りに並ぶ
  (ア)男子が向かい合う並び方は何通りあるか
  (イ)男子が隣り合う並び方は何通りあるか

(2)9人のうち5人を選んで円形に並べる方法は何通りあるか
この動画を見る 

『3×4=?』

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【問題文】『3×4=?』
この動画を見る 

【数学A/テスト対策】反復試行の確率(点の移動)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
垂直線上の原点に点$P$がある。
さいころを1回投げて5以上の目がでたとき、点$P$を正の向きに2だけ進め、他の目が出ると負の向きに1だけ進める。
サイコロを6回投げるとき、$P$が座標6の点にくる確率を求めよ。
この動画を見る 

答えは0通り⁉️

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
100円玉、50円玉、10円玉で3000面を支払うのは何通りか?

産業医科大過去問
この動画を見る 
PAGE TOP