大学入試問題#732「まあ面白い良問!」 早稲田大学人間科学部(2022) 級数 - 質問解決D.B.(データベース)

大学入試問題#732「まあ面白い良問!」 早稲田大学人間科学部(2022) 級数

問題文全文(内容文):
自然数$n$に対して、
$S_n=\displaystyle \int_{e^{n-1}}^{e^n} \displaystyle \frac{\sin(\pi\ log\ x)}{x^2} dx$とする。

さらに $T=\displaystyle \sum_{n=1}^\infty S_n$とする。

以下の問いに答えよ。
(1)$S_1$を求めよ。
(2)$\displaystyle \frac{S_{n+1}}{S_n}$を求めよ。
(3)$T$を求めよ。

出典:2022年早稲田大学人間科学部 入試問題
単元: #関数と極限#数列の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
自然数$n$に対して、
$S_n=\displaystyle \int_{e^{n-1}}^{e^n} \displaystyle \frac{\sin(\pi\ log\ x)}{x^2} dx$とする。

さらに $T=\displaystyle \sum_{n=1}^\infty S_n$とする。

以下の問いに答えよ。
(1)$S_1$を求めよ。
(2)$\displaystyle \frac{S_{n+1}}{S_n}$を求めよ。
(3)$T$を求めよ。

出典:2022年早稲田大学人間科学部 入試問題
投稿日:2024.02.11

<関連動画>

【和の極限】無限級数の基礎と求め方を解説!【数学III】

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
無限級数の基礎と求め方を解説します。
この動画を見る 

【数Ⅲ】【関数と極限】次の無限級数の収束、発散について調べ、収束する場合は、その和を求めよ。(1) 2 + 2/1+2 + 2/1+2+3 +・・・+ 2/1+2+3+…+n +・・・他

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の収束・発散について調べ,収束する場合はその和を求めよ。

(1)$2+\frac{2}{1+2} + \frac{2}{1+2+3} + \frac{2}{1+2+3+4} + \cdots$

(2)$\frac{1}{3} + \frac{1}{3+5} + \frac{1}{3+5+7} + \cdots + \frac{1}{3+5+7+\cdots+(2n+1)} + \cdots$
この動画を見る 

【高校数学】数Ⅲ-74 数列の極限⑩(無限等比級数)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の無限級数が収束するような実数$x$の値の範囲と、
収束するときの和を求めよ。

①$1+\dfrac{x}{3}+\dfrac{x^2}{9}+\dfrac{x^3}{27}+・・・$

②$(x-4)+\dfrac{x(x-4)}{2x-4}+\dfrac{x^2(x-4)}{(2x-4)^2}+・・・ \quad (x \neq 2)$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題069〜千葉大学2017年度理系第8問〜放物線上の3点を頂点とする三角形の面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。

2017千葉大学理系過去問
この動画を見る 

【高校数学】数Ⅲ-87 関数の連続性②

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数$f(x)$が、$x=0$で連続であるか不連続であるかを調べよ。
ただし、$[x]$は実数$x$を超えない最大の整数とする。

①$f(x)=3x^2$

②$f(x)=[\cos x]$

③$f(x)=x^2+\dfrac{x^2}{1+x^2}+\dfrac{x^2}{(1+x^2)^2}+・・・$
この動画を見る 
PAGE TOP