大学入試問題#732「まあ面白い良問!」 早稲田大学人間科学部(2022) 級数 - 質問解決D.B.(データベース)

大学入試問題#732「まあ面白い良問!」 早稲田大学人間科学部(2022) 級数

問題文全文(内容文):
自然数$n$に対して、
$S_n=\displaystyle \int_{e^{n-1}}^{e^n} \displaystyle \frac{\sin(\pi\ log\ x)}{x^2} dx$とする。

さらに $T=\displaystyle \sum_{n=1}^\infty S_n$とする。

以下の問いに答えよ。
(1)$S_1$を求めよ。
(2)$\displaystyle \frac{S_{n+1}}{S_n}$を求めよ。
(3)$T$を求めよ。

出典:2022年早稲田大学人間科学部 入試問題
単元: #関数と極限#数列の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
自然数$n$に対して、
$S_n=\displaystyle \int_{e^{n-1}}^{e^n} \displaystyle \frac{\sin(\pi\ log\ x)}{x^2} dx$とする。

さらに $T=\displaystyle \sum_{n=1}^\infty S_n$とする。

以下の問いに答えよ。
(1)$S_1$を求めよ。
(2)$\displaystyle \frac{S_{n+1}}{S_n}$を求めよ。
(3)$T$を求めよ。

出典:2022年早稲田大学人間科学部 入試問題
投稿日:2024.02.11

<関連動画>

ハルハル様の作成問題⑤ -1 #極限 #ガウス記号

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\theta_n=([x]^n+[\displaystyle \frac{x}{n}])^{\frac{1}{n}}\pi$
(1)
$\displaystyle \lim_{ x \to \infty }\cos\theta_1$

(2)
$\displaystyle \lim_{ x \to \infty }\tan\theta_2$
この動画を見る 

【対数の微分】対数関数の微分の導出について解説しました!【数学III】

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
対数関数の微分の導出について解説します。
この動画を見る 

福田の数学〜神戸大学2022年理系第2問〜無限等比級数の図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
mを3以上の自然数、$\theta=\frac{2\pi}{m}$, $C_1$を半径1の円とする。
円$C_1$に内接する(全ての頂点が$C_1$上にある)正m角形を$P_1$とし、
$P_1$に内接する($P_1$の全ての辺と接する)円を$C_2$とする。
同様に、nを自然数とするとき、円$C_n$に内接する正m角形を$P_n$とし、
$P_n$に内接する円を$C_{n+1}$とする。$C_n$の半径を$r_n,C_n$の内側
で$P_n$の外側の部分の面積を$s_n$とし、$f(m)=\sum_{n=1}^{\infty}s_n$とする。以下の問いに答えよ。
(1)$r_n,s_n$の値を$\theta,n$を用いて表せ。
(2)$f(m)$の値を$\theta$を用いて表せ。
(3)極限値$\lim_{m \to \infty}f(m)$を求めよ。
ただし必要があれば$\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}$を用いてよい。

2022神戸大学理系過去問
この動画を見る 

11奈良県教員採用試験(数学:高校3番 逆関数と積分)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣高 $f(x)=\frac{e^x+e^{-x}}{2}$ $(x \geqq 0)$の逆関数をg(x)
(1)g(x)を求めよ。
(2)y=g(x),x=2,x軸で囲まれた面積
この動画を見る 

根号を含む方程式

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-5=\sqrt{x+5}$
実数解を求めよ
この動画を見る 
PAGE TOP