海外数学オリンピック 整数問題 - 質問解決D.B.(データベース)

海外数学オリンピック 整数問題

問題文全文(内容文):
$p^3+q^3-3pq+1$が素数となる自然数$(p,q)$の組をすべて求めよ.

海外数学オリンピック過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^3+q^3-3pq+1$が素数となる自然数$(p,q)$の組をすべて求めよ.

海外数学オリンピック過去問
投稿日:2020.05.16

<関連動画>

大阪大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008大阪大学過去問題
αを$x^2-2x-1=0$の解とする。
$(a+5α)(b+5cα)=1$を満たす整数の組(a,b,c)をすべて求めよ。
ただし必要なら$\sqrt2$が無理数であることは証明せずに用いてよい。
この動画を見る 

九州大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は3の倍数でない整数
$f(x)=2x^3+a^2x^2+2b^2x+1$

(1)
$f(1),f(2)$を3で割った余りは?

(2)
$f(x)=0$は整数解がないことを証明せよ

(3)
$f(x)=0$が有理数解が存在する
$(a,b)$の組をすべて求めよ

出典:2018年九州大学 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^{7^{7^{7^{7^{7}}}}}$を$13$で割った余りを求めよ.
この動画を見る 

一橋大 整数問題 ピタゴラス数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'90一橋大学過去問題
直角三角形の3辺が整数
面積は偶数であることを示せ。

*図は動画内参照
この動画を見る 

整数問題 昭和学院秀英

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$xy=(x+2)^2$をみたす自然数の組(x,y)をすべて求めよ。
昭和学院秀英高等学校
この動画を見る 
PAGE TOP