【数Ⅰ】2次関数:放物線y=-2x²-12x-14を平行移動して、放物線y=-2x²+4x-3に重ねるには、どのように平行移動するとよいか。 - 質問解決D.B.(データベース)

【数Ⅰ】2次関数:放物線y=-2x²-12x-14を平行移動して、放物線y=-2x²+4x-3に重ねるには、どのように平行移動するとよいか。

問題文全文(内容文):
放物線y=-2x²-12x-14を平行移動して、放物線y=-2x²+4x-3に重ねるには、どのように平行移動するとよいか。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説
3:21 名言

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=-2x²-12x-14を平行移動して、放物線y=-2x²+4x-3に重ねるには、どのように平行移動するとよいか。
投稿日:2021.01.22

<関連動画>

【高校数学】  数Ⅰ-47  2次関数の最大・最小⑥ ・ 動く定義域編②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎aは定数とする。関数$y=x^2-4x+5(a \leqq x \leqq a+1)$について。

①最小値を求めよう。
②最大値を求めよう。
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=\sqrt 2 -1$ , $xy= -1$のとき
$x^3+x^2y+xy^2+y^3=?$
この動画を見る 

【三角比の基本】三角比の値の求め方を解説(数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の三角比の表を完成させよ。
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問1

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次方程式と2次不等式#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問1.
1辺の長さが6mの正方形の形をした花壇Aがあります。花壇Aより縦が 2a m長く、横が a m長い長方形の形をした
花壇Bをつくるとき、次の問いに答えなさい。ただし、a>0とします。
(1) 花壇Bの面積は、花壇Aの面積より何m²大きいですか。aを用いて表しなさい。この問題は答えだけを書いてください。
(2) 花壇Bの面積が花壇Aの面積より72m²大きいとき、aを求めるための方程式をつくり、それを解いてaの値を求めなさい。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面上で、次の二つの2次関数のグラフについて考える。

$y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②$

①、②の2次関数のグラフには次の共通点がある。

共通点:・y軸との交点のy座標は$\boxed{ア}$である。
・y軸との交点における接線の方程式は$y=\boxed{イ}\ x+\boxed{ウ}$である。

次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が
$y=\boxed{イ\}\ x+\boxed{ウ}$となるものは
$\boxed{エ}$である。

$\boxed{エ}$の解答群
⓪$y=3x^2-2x-3$ ①$y=-3x^2+2x-3$ ②$y=2x^2+2x-3$
③$y=2x^2-2x+3$ ④$y=-x^2+2x+3$ ⑤$y=-x^2-2x+3$

a,b,cを0でない実数とする。
曲線$y=ax^2+bx+c$上の点$(0,\boxed{オ})$における接線をlとすると、
その方程式は$y=\boxed{カ}\ x+\boxed{キ}$である。

直線lとx軸との交点のx座標は$\frac{\boxed{クケ}}{\boxed{コ}}$である。

a,b,cが正の実数であるとき、曲線$y=ax^2+bx+c$と
直線lおよび直線$x=\frac{\boxed{クケ}}{\boxed{コ}}$で囲まれた図形の
面積を$S$とすると$S=\frac{ac^{\boxed{サ}}}{\boxed{シ}b^{\boxed{ス}}} \ldots③$ である。

③において、$a=1$とし、Sの値が一定となるように正の実数b,cの値を変化させる。
このとき、bとcの関係を表すグラフの概形は$\boxed{セ}$である。
(※$\boxed{セ}$の選択肢は動画参照)

2022共通テスト数学過去問
この動画を見る 
PAGE TOP