福田の一夜漬け数学〜数列・和Snの問題〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・和Snの問題〜高校2年生

問題文全文(内容文):
数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が次のときの一般項$a_n$を求めよ。
(1)$S_n=n^2-2n+3$
(2)$S_n=2^n+3^n-2$


数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n-n$であるとき、
$a_n$を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が次のときの一般項$a_n$を求めよ。
(1)$S_n=n^2-2n+3$
(2)$S_n=2^n+3^n-2$


数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n-n$であるとき、
$a_n$を求めよ。
投稿日:2018.04.30

<関連動画>

【高校数学】 数B-56 数列とは?

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$1,3,5,7,・・・$のように,数を一列に並べたものを数列といい,
数列を作っている各数を①という.
その中でも最初のものを②,最後のものを③という.

問題1
一般項$\{ an \}$が次の式で表される数列の$\large{a_1,a_4,a_7}$を求めよう.

④$2n-1$

⑤$-3n+2$

⑥$(-1)^n$

問題2
次の数列の一般項$\large{a_n}$を推測しよう.

⑦$3,6,9,12,・・・$

⑧$\dfrac{3}{2},\dfrac{9}{4},\dfrac{27}{6},\dfrac{81}{8},・・・$

⑨$-1,2,-3,4,・・・$
この動画を見る 

宇都宮大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ

出典:2013年宇都宮大学 過去問
この動画を見る 

【高校数学】階差数列の漸化式~分かりやすく~ 3-17【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

【数B】【数列】漸化式7 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、1辺の長さ1の正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_1$とする。
同様に、新しくできた正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_2$とする。
以下同様に、この操作を$n$回行った後にできる
正方形の面積を$S_n$とする。

(1) $S_n$をnの式で表せ。
(2) $\displaystyle \sum_{k=1}^n S_n$を求めよ。
この動画を見る 

難解な数列の問題 By 英語orドイツ語シはBかHか さん

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_0=b_0=1$

$a_{n+1}=\displaystyle \frac{a_n}{a_n^2+b_n^2}$

$b_{n+1}=2-\displaystyle \frac{b_n}{a_n^2+b_n^2}$

一般項$a_n,b_n$を求めよ。
この動画を見る 
PAGE TOP