破れたページは何ページ目? - 質問解決D.B.(データベース)

破れたページは何ページ目?

単元: #数Ⅰ#数と式#2次関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
投稿日:2022.06.19

<関連動画>

数と式 式の展開①【化学のタカシーがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
[ ]内の文字について降べきの順に整理せよ
$ax^2+bx-x^4+ax^2-ab [x]$
$2x^2+y^2-3xy-2y^2+3y+4xy-x^2-2x-5 [y]$
$ax^3+a^2x-2x^2-a^3-3ax^3+4a^3 [a]$
$a^2b+b^3+abc-a^2c-ac^2+bc^2-ab^2+c^3 [a]$

ある多項式から$3x^2-xy+2y^2$を引くところ
を誤って加えたため,答えが$2x^2+xy-y^2$
となった。正しい答えを求めよ

次の式を展開した時の[ ]内の項の係数を
求めよ
$(5a^3-3a^2b+7ab^2-2b^3)(3a^2+2ab-3b^2)[a^2b^3][a^3b^2]$
$(x+2y-z)(3x+4y+2z)(-x+y-3z)[xy^2][xyz]$
この動画を見る 

【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。

このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}

(1)$A \cap B$={6,12}

(2)$A \cup B$={2,3,4,6,8,9,10,12}

(3)$\overline{ A }$={1,3,5,7,9,11}

(4)$\overline{ B }$={1,2,4,5,7,8,10,11}

(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}

(6)$\overline{ A }$$\cap B$={3,9}

(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}

(8)$\overline{ A \cup B }$={1,5,7,11}

-----------------

全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。

(1)$A \cup B$={2,3,5,6,7,9}

(2)$A$={2,3,5,7}

(3)$B$={3,6,9}
この動画を見る 

2024山口大 1の10乗根のナイスな問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ

出典:2024年山口大学数学 過去問
この動画を見る 

【数Ⅰ】【2次関数】2次不等式応用4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。

放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。

2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る 

6乗−6乗 因数分解 京都産業大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^6-y^6$

京都産業大学
この動画を見る 
PAGE TOP