【わかりやすく】条件が比例式である等式の証明(数学Ⅱ/等式の証明) - 質問解決D.B.(データベース)

【わかりやすく】条件が比例式である等式の証明(数学Ⅱ/等式の証明)

問題文全文(内容文):
$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a+b}{a-b}=\displaystyle \frac{c+d}{c-d}$が成り立つことを証明せよ。
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a+b}{a-b}=\displaystyle \frac{c+d}{c-d}$が成り立つことを証明せよ。
投稿日:2022.05.21

<関連動画>

学習院大 整式の剰余 積の微分公式証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^n-1$を$(x-1)^2$で割った余りを求めよ

出典:学習院大学 過去問
この動画を見る 

【高校数学】不等式の証明~どこよりも丁寧に~ 1-11【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) x > 1,y > 1のとき次の不等式が成り立つことを証明せよ
xy + 1 > x + y
(2) 不等式 a²- ab + b² ≧0を証明せよ
また、等号が成り立つのはどのようなときか。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第4問Part1〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 

福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
この動画を見る 

これ意味わかる?

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これ意味わかる?
※問題式は動画内参照
この動画を見る 
PAGE TOP