灘中 難関大学並の整数問題 - 質問解決D.B.(データベース)

灘中 難関大学並の整数問題

問題文全文(内容文):
$A=123456789$
$A$の2つの数を入れかえてできる数を小さい順に$a_1,a_2・・・・・・a_{36}$とする.
$a_1=123456798$
$a_{36}=923456781$
$b_k=a_k-A,1\leqq k\leqq 36$である.

(1)$1000$で割り切れる$b_k$の個数を求めよ.
(2)$37$で割り切れる$b_k$の個数を求めよ.
(3)$b_1 \times b_2 \times b_3 \times ・・・\times b_{36}$は3で何回割り切れるか

2016灘中過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=123456789$
$A$の2つの数を入れかえてできる数を小さい順に$a_1,a_2・・・・・・a_{36}$とする.
$a_1=123456798$
$a_{36}=923456781$
$b_k=a_k-A,1\leqq k\leqq 36$である.

(1)$1000$で割り切れる$b_k$の個数を求めよ.
(2)$37$で割り切れる$b_k$の個数を求めよ.
(3)$b_1 \times b_2 \times b_3 \times ・・・\times b_{36}$は3で何回割り切れるか

2016灘中過去問
投稿日:2020.08.14

<関連動画>

ガウス記号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(6+3\sqrt3)^{2020}]$を$3^{2020}$で割った余りを求めよ.
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(2)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(2)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B=aCb$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_{a}\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 

【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。

京都大過去問
この動画を見る 

福田のおもしろ数学038〜中学生でも理解できる〜素数がむすうに存在する証明その1

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#その他#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
素数が無数に存在する証明 その1
この動画を見る 

京都工芸繊維大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$m^{m-1}+1$を$8$で割った余りを求めよ.
(1)$m$が偶数のとき
(2)$m$が奇数のとき

2021京都工芸大過去問
この動画を見る 
PAGE TOP