【数Ⅱ】微分法と積分法:一橋大学1989年 角度の最大 - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:一橋大学1989年 角度の最大

問題文全文(内容文):
曲線$C:y=x^3$上の点$P(a,a^3)(a\gt 0)$における接線をlとし、lが再びCと交わる点をQとする。また、QにおけるCの接線をmとし、lとmがなす角を$\theta(0\lt\theta\lt \dfrac{\pi}{2})$とする。
(1)$\tan\theta$をaを用いて表せ。
(2)aが正の実数値をとりながら変化するとき、$\theta$を最大にするaの値、および、そのときの$\tan\theta$の値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1)
1:05 x=aで接する⇔(x-a)²でくくれる
1:59 角度の最大はtan(傾き)
3:28 問題解説(2):分数和の最大最小は相加相乗平均
5:13 名言

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C:y=x^3$上の点$P(a,a^3)(a\gt 0)$における接線をlとし、lが再びCと交わる点をQとする。また、QにおけるCの接線をmとし、lとmがなす角を$\theta(0\lt\theta\lt \dfrac{\pi}{2})$とする。
(1)$\tan\theta$をaを用いて表せ。
(2)aが正の実数値をとりながら変化するとき、$\theta$を最大にするaの値、および、そのときの$\tan\theta$の値を求めよう。
投稿日:2021.09.13

<関連動画>

福田の数学〜一橋大学2023年文系第5問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。

2023一橋大学文系過去問
この動画を見る 

大学入試問題#120 早稲田大学(2003) 対数の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,\ a \neq 1$
$log\ a(x+2) \geqq log\ a^2(3x+16)$を解け

出典:2003年早稲田大学 入試問題
この動画を見る 

大阪市立大 微分と接線の基本問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2-4x$に$(0,k)$から引ける接線の数を求めよ

出典:大阪市立大学 過去問
この動画を見る 

熊本大 関数の領域

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$

$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。

出典:2001年熊本大学 過去問
この動画を見る 

室蘭工業大 漸化式基本

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=2,a_{n+1}=\dfrac{1}{2}a_n+\dfrac{4n+2^n}{2^{n+1}}$である.
$a_n\lt a_{n+1}$を満たす最大の自然数$n$を求めよ.

室蘭工業大過去問
この動画を見る 
PAGE TOP