大学入試問題#8 東京理科大学(2021) 定積分 - 質問解決D.B.(データベース)

大学入試問題#8 東京理科大学(2021) 定積分

問題文全文(内容文):
次の定積分を計算せよ。

$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

出典:2021年東京理科大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の定積分を計算せよ。

$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

出典:2021年東京理科大学 入試問題
投稿日:2021.09.11

<関連動画>

大学入試問題#101 東海大学医学部(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^3(1-x^2)^8dx$を計算せよ。

出典:2017年東海大学医学部 入試問題
この動画を見る 

大学入試問題#163 信州大学(2004) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{log\ x}{x^3}\ dx$

出典:2004年信州大学 入試問題
この動画を見る 

福田の数学〜千葉大学2022年理系第8問〜定積分で著された式の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
正の整数$m,n$に対して、
$A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx$
とおく。
(1)$e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1$ を証明せよ。
(2)各$m$に対して、$b_m=\lim_{n \to \infty}A(m,n)$ を求めよ。
(3)各$n$に対して、$c_n=\lim_{m \to \infty}A(m,n)$ を求めよ。

2022千葉大学理系過去問
この動画を見る 

大学入試問題#353「依頼により誘導通りに解いてみた」 埼玉大学2013 #定積分 #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$f(x)$連続
$\displaystyle \int_{0}^{\pi} x\ f(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi} f(\sin\ x) dx$


(2)
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x(a^2-4\cos^2\ x)\sin\ x}{a^2-\cos^2x} dx$

出典:2013年埼玉大学 入試問題
この動画を見る 

大学入試問題#1 早稲田大学(2021) 微積の応用

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 
PAGE TOP