愛のある2次方程式 - 質問解決D.B.(データベース)

愛のある2次方程式

問題文全文(内容文):
これを解け.

$x^2-2ix-2-i=0$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$x^2-2ix-2-i=0$
投稿日:2021.04.13

<関連動画>

【数学】イッパツ理解!二次関数の「場合分け」をする基準~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数Ⅰ#2次関数#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!
数学の「二次関数の「場合分け」をする基準」についてお話しています。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 

2つの二次方程式 2025立教新座

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式
指導講師: 数学を数楽に
問題文全文(内容文):
2つの2次方程式 \begin{eqnarray}
x^2 -kx-10 = 0
\end{eqnarray}
\begin{eqnarray}
x^2+5x+2k=0
\end{eqnarray}
が共通解を1つだけ持つ。この共通解と定数kを求めよ。ただしk≠-5
この動画を見る 

【数Ⅰ】【集合と論証】有理数、無理数の証明 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の条件を満たす有理数 $p, \, q$ の値を求めよ。
$(1) \, (\sqrt{2}-1)p+q\sqrt(2)=2+\sqrt{2}$
$(2) \, \frac{p}{\sqrt{2}-1}+\frac{q}{\sqrt{2}}=1$

問題2
$p, \, q$ が有理数、$X$ が無理数で、$p+qX=0$ であるならば、$p=q=0$ であることを証明せよ。
この動画を見る 

簡単な計算問題

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\sqrt{\dfrac{2021^3-2019^3-2}{6}}$
この動画を見る 
PAGE TOP