横浜市立(医・理) - 質問解決D.B.(データベース)

横浜市立(医・理)

問題文全文(内容文):
2023横浜市立(医・理)
$
\\
Z^4=Z^2-1をみたす\\
Z^{40}+2Z^{10}+\frac{1}{Z^{20}}
$
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023横浜市立(医・理)
$
\\
Z^4=Z^2-1をみたす\\
Z^{40}+2Z^{10}+\frac{1}{Z^{20}}
$
投稿日:2023.10.11

<関連動画>

【高校数学】数Ⅲ-1 複素数平面・共役な複素数①

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$z=1+2i$とする.
複素平面上に次の点を図示しよう.

⑤$A(Z)$
⑥$B(-Z)$
⑦$C(\overline{ Z})$
⑧$D(-\overline{Z})$

図は動画内参照
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(1)〜ド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
$(1)\ (1+i)^{10}$を展開して得られる複素数は$\boxed{\ \ ア\ \ }$である。ただし、iは虚数単位とする。

2021慶應義塾大学薬学部過去問
この動画を見る 

19京都府教員採用試験(数学:1番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣
(1)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3$
(2)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3+ \cdots + (\frac{-1+\sqrt 3 i }{2})^{3k+2}$
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

【数ⅢC】複素数平面の基本①複素数平面の基本的な考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
動画について不明点や質問などあればコメント欄にお気軽にお書きください!
この動画を見る 
PAGE TOP