福田の数学〜早稲田大学2025人間科学部第1問(3)〜球面が平面から切り取る領域の面積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025人間科学部第1問(3)〜球面が平面から切り取る領域の面積

問題文全文(内容文):

$\boxed{1}$

(3)座標空間における$2$点

$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$

を直径の両端とする球面$S$がある。

球面$S$が$xy$平面を切り取る領域の面積は

$\boxed{カ}\pi$である。

また、球面$S$が$z$軸を切り取る線分の長さは

$\sqrt{\boxed{キ}}$である。

$2025$年早稲田大学人間科学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)座標空間における$2$点

$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$

を直径の両端とする球面$S$がある。

球面$S$が$xy$平面を切り取る領域の面積は

$\boxed{カ}\pi$である。

また、球面$S$が$z$軸を切り取る線分の長さは

$\sqrt{\boxed{キ}}$である。

$2025$年早稲田大学人間科学部過去問題
投稿日:2025.07.05

<関連動画>

軌跡の難問!軌跡は苦手意識を持った人も多いので差がつきます【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
長さlの線分が、その両端を放物線y=x^2にのせて動く。この線分の中点Mがx軸に最も近い場合のMの座標を求めよ。ただし、l≧1とする。
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数不等式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値があれば、それを求めよ。
また、そのときの $x$ の値を求めよ。
(1) $y = (\log_{3}{x})^2 + 2\log_{3}{x}$
(2) $y = \left( \log_{2}{\frac{4}{x}} \right) \left( \log_{2}{\frac{x}{2}} \right)$
(3) $y = (\log_{3}{x})^2 - 4\log_{3}{x} + 3 \quad (1 \leq x \leq 27)$

関数 $y = \log_{\frac{1}{3}}{x} + \log_{\frac{1}{3}}{(6 - x)}$ の最小値を求めよ。

$a > 0$, $b > 0$ のとき、不等式

$\log_{2} (a + \frac{1}{b}) + \log_{2} (b + \frac{1}{a}) \geq 2$

を証明せよ。
この動画を見る 

数検準1級1次過去問(1番 相加平均・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ a≠0
$\frac{2a^4-4a^2+8}{a^2}$の最小値を求めよ
この動画を見る 

#秋田大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#秋田大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{1}{x\ log\ x} dx$

出典:2019年秋田大学
この動画を見る 

【高校数学】毎日積分31日目【共通テスト直前特別編】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テストでも使える!?面積を求めるときの積分の公式についてまとめました!
この動画を見る 
PAGE TOP