【数Ⅲ】【関数】垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1, △CA1A2, △CA2A3,…の面積の総和が△ABCの面積を超えないためには∠Cの大きさはどんな範囲にあればよいか - 質問解決D.B.(データベース)

【数Ⅲ】【関数】垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1, △CA1A2, △CA2A3,…の面積の総和が△ABCの面積を超えないためには∠Cの大きさはどんな範囲にあればよいか

問題文全文(内容文):
図のような直角三角形ABCの直角の頂点Aから、
順に、垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1,
△CA1A2, △CA2A3,…の面積の総和が△ABCの面積を
超えないためには、∠Cの大きさはどんな範囲に
あればよいか。
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のような直角三角形ABCの直角の頂点Aから、
順に、垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1,
△CA1A2, △CA2A3,…の面積の総和が△ABCの面積を
超えないためには、∠Cの大きさはどんな範囲に
あればよいか。
投稿日:2025.11.29

<関連動画>

数学「大学入試良問集」【17−8 不等式とハサミウチの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$h \gt 0$として、不等式$(1+h)^n \geqq 1+nh+\displaystyle \frac{n(n-1)}{2}h^2$がすべての自然数$n$について成り立つことを数学的帰納法を用いて説明せよ。

(2)
(1)の不等式を使って、$0 \lt x \lt 1$のとき、数列$\{nx^n\}$が$0$に収束することを示せ。

(3)
$0 \lt x \lt 1$のとき
無限級数$2x+4x^2+6x^3+・・・+2nx^n+・・・$の和を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

数学「大学入試良問集」【19−8 極限で定義された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正の数$x$に対して定義された次の関数$f(x)$を考える。
$f(x)=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{4x^{n+1}+ax^n+log\ x+1}{x^{n+2}+x^n+1}$
ここで、$a$は定数である。
このとき、次の各問いに答えよ。

(1)
極限計算により関数$f(x)$を求めると
$0 \lt x \lt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ア },f(1)=\fcolorbox{black}{ #fffff }{ イ },x \gt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ウ }$。

(2)
関数$f(x)$が$x=1$で連続になるときの$a$の値を求めよ。
以下、$a$はこの値とする。

(3)
関数$f(x)$の増減、極値および$f(x)=0$をみたす$x$の値を調べて、関数$f(x)$のグラフ$C$の概形を描け。

(4)
関数$f(x)$のグラフ$C$と直線$x=\sqrt{ 3 }$および$x$軸で囲まれる部分の面積を求めよ。
この動画を見る 

06兵庫県教員採用試験(数学:5番類題 極限値)

アイキャッチ画像
単元: #関数と極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣$\displaystyle \lim_{ x \to +0 } xlogx$
この動画を見る 

ド・モアブルの定理を用いてオイラーの公式を導く

アイキャッチ画像
単元: #複素数平面#関数と極限#複素数平面#関数の極限#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
この動画を見る 
PAGE TOP